05 | 复杂度来源:高可用
下载APP
关闭
渠道合作
推荐作者
05 | 复杂度来源:高可用
2018-05-08 李运华 来自北京
《从0开始学架构》
课程介绍
讲述:黄洲君
时长12:21大小5.66M
今天,我们聊聊复杂度的第二个来源高可用。
参考维基百科,先来看看高可用的定义。
系统无中断地执行其功能的能力,代表系统的可用性程度,是进行系统设计时的准则之一。
这个定义的关键在于“无中断”,但恰好难点也在“无中断”上面,因为无论是单个硬件还是单个软件,都不可能做到无中断,硬件会出故障,软件会有 bug;硬件会逐渐老化,软件会越来越复杂和庞大……
除了硬件和软件本质上无法做到“无中断”,外部环境导致的不可用更加不可避免、不受控制。例如,断电、水灾、地震,这些事故或者灾难也会导致系统不可用,而且影响程度更加严重,更加难以预测和规避。
所以,系统的高可用方案五花八门,但万变不离其宗,本质上都是通过“冗余”来实现高可用。通俗点来讲,就是一台机器不够就两台,两台不够就四台;一个机房可能断电,那就部署两个机房;一条通道可能故障,那就用两条,两条不够那就用三条(移动、电信、联通一起上)。高可用的“冗余”解决方案,单纯从形式上来看,和之前讲的高性能是一样的,都是通过增加更多机器来达到目的,但其实本质上是有根本区别的:高性能增加机器目的在于“扩展”处理性能;高可用增加机器目的在于“冗余”处理单元。
通过冗余增强了可用性,但同时也带来了复杂性,我会根据不同的应用场景逐一分析。
计算高可用
这里的“计算”指的是业务的逻辑处理。计算有一个特点就是无论在哪台机器上进行计算,同样的算法和输入数据,产出的结果都是一样的,所以将计算从一台机器迁移到另外一台机器,对业务并没有什么影响。既然如此,计算高可用的复杂度体现在哪里呢?我以最简单的单机变双机为例进行分析。先来看一个单机变双机的简单架构示意图。
你可能会发现,这个双机的架构图和上期“高性能”讲到的双机架构图是一样的,因此复杂度也是类似的,具体表现为:
需要增加一个任务分配器,选择合适的任务分配器也是一件复杂的事情,需要综合考虑性能、成本、可维护性、可用性等各方面因素。
任务分配器和真正的业务服务器之间有连接和交互,需要选择合适的连接方式,并且对连接进行管理。例如,连接建立、连接检测、连接中断后如何处理等。
任务分配器需要增加分配算法。例如,常见的双机算法有主备、主主,主备方案又可以细分为冷备、温备、热备。
上面这个示意图只是简单的双机架构,我们再看一个复杂一点的高可用集群架构。
这个高可用集群相比双机来说,分配算法更加复杂,可以是 1 主 3 备、2 主 2 备、3 主 1 备、4 主 0 备,具体应该采用哪种方式,需要结合实际业务需求来分析和判断,并不存在某种算法就一定优于另外的算法。例如,ZooKeeper 采用的就是 1 主多备,而 Memcached 采用的就是全主 0 备。
存储高可用
对于需要存储数据的系统来说,整个系统的高可用设计关键点和难点就在于“存储高可用”。存储与计算相比,有一个本质上的区别:将数据从一台机器搬到到另一台机器,需要经过线路进行传输。线路传输的速度是毫秒级别,同一机房内部能够做到几毫秒;分布在不同地方的机房,传输耗时需要几十甚至上百毫秒。例如,从广州机房到北京机房,稳定情况下 ping 延时大约是 50ms,不稳定情况下可能达到 1s 甚至更多。
虽然毫秒对于人来说几乎没有什么感觉,但是对于高可用系统来说,就是本质上的不同,这意味着整个系统在某个时间点上,数据肯定是不一致的。按照“数据 + 逻辑 = 业务”这个公式来套的话,数据不一致,即使逻辑一致,最后的业务表现就不一样了。以最经典的银行储蓄业务为例,假设用户的数据存在北京机房,用户存入了 1 万块钱,然后他查询的时候被路由到了上海机房,北京机房的数据没有同步到上海机房,用户会发现他的余额并没有增加 1 万块。想象一下,此时用户肯定会背后一凉,马上会怀疑自己的钱被盗了,然后赶紧打客服电话投诉,甚至打 110 报警,即使最后发现只是因为传输延迟导致的问题,站在用户的角度来说,这个过程的体验肯定很不好。
除了物理上的传输速度限制,传输线路本身也存在可用性问题,传输线路可能中断、可能拥塞、可能异常(错包、丢包),并且传输线路的故障时间一般都特别长,短的十几分钟,长的几个小时都是可能的。例如,2015 年支付宝因为光缆被挖断,业务影响超过 4 个小时;2016 年中美海底光缆中断 3 小时等。在传输线路中断的情况下,就意味着存储无法进行同步,在这段时间内整个系统的数据是不一致的。
综合分析,无论是正常情况下的传输延迟,还是异常情况下的传输中断,都会导致系统的数据在某个时间点或者时间段是不一致的,而数据的不一致又会导致业务问题;但如果完全不做冗余,系统的整体高可用又无法保证,所以存储高可用的难点不在于如何备份数据,而在于如何减少或者规避数据不一致对业务造成的影响。
分布式领域里面有一个著名的 CAP 定理,从理论上论证了存储高可用的复杂度。也就是说,存储高可用不可能同时满足“一致性、可用性、分区容错性”,最多满足其中两个,这就要求我们在做架构设计时结合业务进行取舍。
高可用状态决策
无论是计算高可用还是存储高可用,其基础都是“状态决策”,即系统需要能够判断当前的状态是正常还是异常,如果出现了异常就要采取行动来保证高可用。如果状态决策本身都是有错误或者有偏差的,那么后续的任何行动和处理无论多么完美也都没有意义和价值。但在具体实践的过程中,恰好存在一个本质的矛盾:通过冗余来实现的高可用系统,状态决策本质上就不可能做到完全正确。下面我基于几种常见的决策方式进行详细分析。
1. 独裁式
独裁式决策指的是存在一个独立的决策主体,我们姑且称它为“决策者”,负责收集信息然后进行决策;所有冗余的个体,我们姑且称它为“上报者”,都将状态信息发送给决策者。
独裁式的决策方式不会出现决策混乱的问题,因为只有一个决策者,但问题也正是在于只有一个决策者。当决策者本身故障时,整个系统就无法实现准确的状态决策。如果决策者本身又做一套状态决策,那就陷入一个递归的死循环了。
2. 协商式
协商式决策指的是两个独立的个体通过交流信息,然后根据规则进行决策,最常用的协商式决策就是主备决策。
这个架构的基本协商规则可以设计成:
2 台服务器启动时都是备机。
2 台服务器建立连接。
2 台服务器交换状态信息。
某 1 台服务器做出决策,成为主机;另一台服务器继续保持备机身份。
协商式决策的架构不复杂,规则也不复杂,其难点在于,如果两者的信息交换出现问题(比如主备连接中断),此时状态决策应该怎么做。
如果备机在连接中断的情况下认为主机故障,那么备机需要升级为主机,但实际上此时主机并没有故障,那么系统就出现了两个主机,这与设计初衷(1 主 1 备)是不符合的。
如果备机在连接中断的情况下不认为主机故障,则此时如果主机真的发生故障,那么系统就没有主机了,这同样与设计初衷(1 主 1 备)是不符合的。
如果为了规避连接中断对状态决策带来的影响,可以增加更多的连接。例如,双连接、三连接。这样虽然能够降低连接中断对状态带来的影响(注意:只能降低,不能彻底解决),但同时又引入了这几条连接之间信息取舍的问题,即如果不同连接传递的信息不同,应该以哪个连接为准?实际上这也是一个无解的答案,无论以哪个连接为准,在特定场景下都可能存在问题。
综合分析,协商式状态决策在某些场景总是存在一些问题的。
3. 民主式
民主式决策指的是多个独立的个体通过投票的方式来进行状态决策。例如,ZooKeeper 集群在选举 leader 时就是采用这种方式。
民主式决策和协商式决策比较类似,其基础都是独立的个体之间交换信息,每个个体做出自己的决策,然后按照“多数取胜”的规则来确定最终的状态。不同点在于民主式决策比协商式决策要复杂得多,ZooKeeper 的选举算法 ZAB,绝大部分人都看得云里雾里,更不用说用代码来实现这套算法了。
除了算法复杂,民主式决策还有一个固有的缺陷:脑裂。这个词来源于医学,指人体左右大脑半球的连接被切断后,左右脑因为无法交换信息,导致各自做出决策,然后身体受到两个大脑分别控制,会做出各种奇怪的动作。例如:当一个脑裂患者更衣时,他有时会一只手将裤子拉起,另一只手却将裤子往下脱。脑裂的根本原因是,原来统一的集群因为连接中断,造成了两个独立分隔的子集群,每个子集群单独进行选举,于是选出了 2 个主机,相当于人体有两个大脑了。
从图中可以看到,正常状态的时候,节点 5 作为主节点,其他节点作为备节点;当连接发生故障时,节点 1、节点 2、节点 3 形成了一个子集群,节点 4、节点 5 形成了另外一个子集群,这两个子集群的连接已经中断,无法进行信息交换。按照民主决策的规则和算法,两个子集群分别选出了节点 2 和节点 5 作为主节点,此时整个系统就出现了两个主节点。这个状态违背了系统设计的初衷,两个主节点会各自做出自己的决策,整个系统的状态就混乱了。
为了解决脑裂问题,民主式决策的系统一般都采用“投票节点数必须超过系统总节点数一半”规则来处理。如图中那种情况,节点 4 和节点 5 形成的子集群总节点数只有 2 个,没有达到总节点数 5 个的一半,因此这个子集群不会进行选举。这种方式虽然解决了脑裂问题,但同时降低了系统整体的可用性,即如果系统不是因为脑裂问题导致投票节点数过少,而真的是因为节点故障(例如,节点 1、节点 2、节点 3 真的发生了故障),此时系统也不会选出主节点,整个系统就相当于宕机了,尽管此时还有节点 4 和节点 5 是正常的。
综合分析,无论采取什么样的方案,状态决策都不可能做到任何场景下都没有问题,但完全不做高可用方案又会产生更大的问题,如何选取适合系统的高可用方案,也是一个复杂的分析、判断和选择的过程。
小结
今天我给你讲了复杂度来源之一的高可用,分析了计算高可用和存储高可用两个场景,给出了几种高可用状态决策方式,希望对你有所帮助。
这就是今天的全部内容,留一道思考题给你吧。高性能和高可用是很多系统的核心复杂度,你认为哪个会更复杂一些?理由是什么?
欢迎你把答案写到留言区,和我一起讨论。相信经过深度思考的回答,也会让你对知识的理解更加深刻。(编辑乱入:精彩的留言有机会获得丰厚福利哦!)
分享给需要的人,Ta购买本课程,你将得20元
生成海报并分享
赞 83
提建议
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
上一篇
04 | 复杂度来源:高性能
下一篇
06 | 复杂度来源:可扩展性
精选留言(156)
- 公号-技术夜未眠2018-05-08今日心得 需求驱动驱动;而高可用与高性能,是架构设计中两个非常重要的决策因素。因此,面对不同业务系统的不同需求,对高可用与高性能也会有不同的决策结论,其实现的复杂度也各不相同。支付宝业务,对于可用性和性能就会有很高的要求,在可用性方面希望能提供7*24不间断服务,在高性能方面则希望能实时收付款;而对于一个学生管理系统,在可用性与性能方面就不一定要有多高的要求,比如晚上可关机,几秒内能查询到信息也可接受。为此,高可用性与高性能的复杂度讨论需要结合业务需求。 1 WHAT - 什么是可用性? 定义可用性,可以先定义什么是不可用。需要经历若干环节,网站的页面才能呈现在最终的用户面前;而其中的任何一个环节出现了故障,都可能会导致网站的页面不可访问,也就是出现了网站不可用的情况。昨夜iOS版本QQ出现大面积闪退就是一个系统不可用的典型案例。 我们可以利用百分比来对网站可用性进行度量: 网站不可用时间=完成故障修复的时间点 - 故障发现的时间点 网站年度可用时间=年度总时间 - 网站不可用时间 网站年度可用性=(网站年度可用时间/年度总时间) x 100% 举例:一些知名大型网站的可用性可达到99.99%(俗称4个9),我们可以算一下一年下来留给处理故障的时间有多少? 年度总时间=365*24*60=525600分钟 网站不可用时间=525600*(1-99.99%)=52.56分钟 也就是,如果网站要达到4个9的可用性,一年下来网站不可用时间最多53分钟(也就是不足1个小时)。 可见,高可用性就是技术实力的象征,高可用性就是竞争力。 2 WHY - 为什么会出现不可用? 硬件故障。网站多运行在普通的商用服务器,而这些服务器本身就不具备高可用性,再加之网站系统背后有数量众多服务器,那么一定时间内服务器宕机是大概率事件,直接导致部署在该服务器上的服务受影响。 软件BUG或网站更新升级发布。BUG不能消灭,只能减少;上线后的系统在运行过程中,难免会出现故障,而这些故障同样直接导致某些网站服务不可用;此外,网站更新升级发布也会引起相对较频繁的服务器宕机。 不可抗拒力。如地震、水灾、战争等。 3 HOW - 如何做到高可用 核心思想:网站高可用的主要技术手段是服务与数据的冗余备份与失效转移。同一服务组件部署在多台服务器上;数据存储在多台服务器上互相备份。通过上述技术手段,当任何一台服务器宕机或出现各种不可预期的问题时,就将相应的服务切换到其他可用的服务器上,不影响系统的整体可用性,也不会导致数据丢失。 从架构角度看可用性:当前网站系统多采用经典的分层模型,从上到下为:应用层、服务层与数据层。应用层主要实现业务逻辑处理;服务层提供可复用的服务;数据层负责数据读写;在部署架构上常采用应用和数据分离部署,应用会部署到不同服务器上,这些服务器被称为应用层的服务器;这些可复用的服务也会各自部署在不同服务器上,称为服务层的服务器;而各类数据库系统、文件柜等数据则部署在数据层的服务器。 硬件故障方面引起不可用的技术解决措施:(1)应用服务器。可通过负载均衡设备将多个应用服务器构建为集群对外提供服务(前提是这些服务需要设计为无状态,即应用服务器不保存业务的上下文信息,而仅根据每次请求提交的数据进行业务逻辑的操作响应),当均衡设备通过心跳检测手段检测到应用服务器不可用时,则将其从集群中移除,并将请求切换到其他可用的应用服务上。(2)服务层服务器。这些服务器被应用层通过分布式服务框架(如Dubbo)访问,分布式服务框架可在应用层客户端程序中实现软件负载均衡,并通过服务注册中心提供服务的服务器进行心跳检测,当发现有服务器不可用时,立即通知客户端程序修改服务列表,同时移除响应的服务器。(3)数据服务器。需要在数据写入时进行数据同步复制,将数据写入多台服务器上,实现数据冗余备份;当数据服务器宕机时,应用程序将访问切换到有备份数据的服务器上。 软件方面引起不可用的技术解决措施:通过软件开发过程进行质量保证。通过预发布验证、严格测试、灰度发布等手段,尽量减少上线服务的故障。展开共 11 条评论392
- 小超在努力2018-08-16古人有言:先解决有无,再解决优化。所以可用更难,性能次之,找对象同理。
作者回复: 你已参透天机😄
共 6 条评论84 - 彡工鸟2018-05-08这么多回复里,没有人提到高可用和高性能的量化指标,没有这个指标前提下,无法断定哪个更复杂吧。打个比方,高可用两条99就行了,你觉得会复杂,会难么?高性能要求你在并发百万,千万级调用十几个服务前提下,仍能保持10多毫秒,你觉得简单?复杂与否还是要指标。另外,很多人都关注应用节点和硬件节点高可用,却忽略了业务高可用这个视角,系统全挂了,你人工接入业务,在后台帮用户开通,办理,对业务来说也是高可用吧。以上个人看法展开
作者回复: 你说的有道理,没有绝对的结论,我的问题只是想引起大家思考,通过思考来更深入理解复杂度。 通常情况下,高可用要复杂一些,因为需要考虑的情景很多,而且没有完美的方案,只能做取舍。
共 5 条评论82 - bieber2018-05-25高可用的解决方法不是解决,而是减少或者规避,而规避某个问题的时候,一般都会引发另一个问题,只是这个问题比之前的小,高可用的设计过程其实也是一个取舍的过程。这也就是为什么系统可用性永远只是说几个九,永远缺少那个一。 而高性能,这个基本上就是定义计算能力,可以通过架构的优化,算法的改进,硬件的升级都可以得到很好的解决,从而达到我们心里对性能的预期…
作者回复: 有道理,没有完美的高可用方案
共 2 条评论69 - 性能2018-05-29老师,银行账务类强一致性业务,适用最终一致性方案吗?我们通常要求既要实时看到账务操作结果,又要提供高性能,最终只能用依赖于数据库实现一致性,但性能压力很大
作者回复: 强一致性目前没有太好的方式,目前一般采取用户分区的做法,即:将用户分散在多个数据分区中,每个数据分区中的用户用单点数据库保证强一致性
共 3 条评论30 - 夜行观星2018-05-13就我一个人注意到ZK的选举算法不是Paxos吗?虽然不是本文重点😂
作者回复: 感谢指正,ZK的协议是ZAB,官方文档也解释了ZAB不是Paxos算法,因为两者的设计目标不同,我没有深入研究两者协议,但大部分研究过的人认为ZAB是在Paxos算法上进行了改良和优化,有兴趣的可以深入研究一下。
共 2 条评论30 - 晓晨同学2019-02-19核心思想:网站高可用的主要技术手段是服务与数据的冗余备份与失效转移。同一服务组件部署在多台服务器上;数据存储在多台服务器上互相备份。通过上述技术手段,当任何一台服务器宕机或出现各种不可预期的问题时,就将相应的服务切换到其他可用的服务器上,不影响系统的整体可用性,也不会导致数据丢失。 从架构角度看可用性:当前网站系统多采用经典的分层模型,从上到下为:应用层、服务层与数据层。应用层主要实现业务逻辑处理;服务层提供可复用的服务;数据层负责数据读写;在部署架构上常采用应用和数据分离部署,应用会部署到不同服务器上,这些服务器被称为应用层的服务器;这些可复用的服务也会各自部署在不同服务器上,称为服务层的服务器;而各类数据库系统、文件柜等数据则部署在数据层的服务器。 硬件故障方面引起不可用的技术解决措施:(1)应用服务器。可通过负载均衡设备将多个应用服务器构建为集群对外提供服务(前提是这些服务需要设计为无状态,即应用服务器不保存业务的上下文信息,而仅根据每次请求提交的数据进行业务逻辑的操作响应),当均衡设备通过心跳检测手段检测到应用服务器不可用时,则将其从集群中移除,并将请求切换到其他可用的应用服务上。(2)服务层服务器。这些服务器被应用层通过分布式服务框架(如Dubbo)访问,分布式服务框架可在应用层客户端程序中实现软件负载均衡,并通过服务注册中心提供服务的服务器进行心跳检测,当发现有服务器不可用时,立即通知客户端程序修改服务列表,同时移除响应的服务器。(3)数据服务器。需要在数据写入时进行数据同步复制,将数据写入多台服务器上,实现数据冗余备份;当数据服务器宕机时,应用程序将访问切换到有备份数据的服务器上。展开
作者回复: 为你点赞👍👍👍
27 - YMF_WX19812018-05-08高可用相对复杂。 高性能,不管通过什么方式,或多或少,性能总获提高,行为上非必须做;高可用必须做,因为系统宕机或数据丢失时,谈高性能也无意义。 高可用涉及分布式存储和分布式计算,这两课题本身就复杂。 高可用涉及的非技术因素,如自然,政治。 So...展开24
- A李文2020-03-17冷备、温备、热备的具体区别是
作者回复: 冷备:系统没启动 温备:系统启动,但是没法接管业务 热备:系统启动,随时可以接管业务
共 4 条评论20 - 佳2018-10-27高性能虽然复杂,但是只要通过合理的集群方案还是可以解决业务的性能需求,但是高可用也只能做到相对高可用,绝对高可用是不存在的,总会有诸多突发外界因素进行干扰,高性能的实现是受人为控制的,只要是在人的控制范围内,那问题都不是问题,但是要做到高可用,很多事情都不是人能控制的,比如天灾人祸
作者回复: 很正确👍
13 - 孙振超2018-05-26相对而言还是高可用更难些,按照作者说的高性能其实就是容量,在负载均衡系统高可用的情况下加机器就可以了,而想做到各个环节的高可用不是靠加机器就能搞定的,通常需要复杂的算法、引入更多的中间件、牺牲一定的性能才能实现,这其中还要进行各种权衡取舍裁剪才可以
作者回复: 确实如此
11 - 云学2018-05-15有些人把高可用与高可靠混淆了,高可用是不要中断服务,高可靠是数据不丢失。
作者回复: 有区别,但实践中一般很难清晰的区分,否则每次都要解释半天,我们一般都是混用,大家都明白是什么意思。 严格来说,高可用是指正常提供服务的概率,主要和故障恢复时间有关;高可靠是指出问题的概率,主要和故障次数有关。大部分情况下其实我们都是说可用性,因为保证系统能够正常提供服务才是我们的首要目标。
11 - 罗烽2018-05-08高性能,高可用,哪个复杂度更高? 我认为高可用更复杂。性能方面,我们可已通过增加机器,拆分服务来提高性能。但是高可用这个不是通过单纯花钱(增加机器)能解决的,但还是必须要花钱😂😂,相比较而言,它更需要一个良好的设计,这个就很复杂了。 关于高可用,我有些自己的想法 1,还是要做小的服务,小的服务稳定性会更高。 2,高可用的监控十分的重要,只有能先发现问题,才能接下来处理问题。 3, 存储高可用(减少和规避数据不一致),这个太复杂的不清楚,我们的业务现在没有那么复杂,数据库用的就是阿里云的主备rds,相比较而言,使用阿里云的服务会让我们的服务保障性更高些,这个只能想到这些展开11
- 李志伟2018-05-08个人觉得根据场景而定,如果一个系统部署结构复杂,组件众多,数据量也很大。那么高可用性的代价就会比较高。因为高可用意味着冗余, 冗余也就意味着要有额外的策略来管理这些冗余的组件。另外大数据量数据服务冗余异地多活也是很有挑战性的。 于此相对如果一个系统他的业务复杂度很高,涉及到很多的复杂计算,但是本身部署结构不复杂,那么这时候高性能的复杂度就会比较大9
- Geek_88604f2019-07-20本质上高可用更难。到目前为止业界还没有办法明确度量到底能达到几个9。你交付给我一个系统,你可以说达到了3个9或4个9,我怎么能相信你呢?反之性能指标是可以很快就能实测出来的。 一般地讲,高可用和高性能就像列车的两条轨道共同进退。一方面为了实现数据库的高可用需要部署主从模式或一主多从模式,但是这样会影响数据库的读写性能;另一方面为了实现高性能,对业务服务器进行扩容,大规模的集群有上千台服务器,几乎每天都会出现各种类型的故障,这就影响到了系统的高可用。展开
作者回复: 独到的解读
共 3 条评论8 - Geek_d8f6352018-05-09区块链技术如果越来越成熟,是不是对高性能有很大帮助?
作者回复: 据我目前对区块链的理解来看,区块链恰恰是性能低下的实现方案,不但没有帮助,还会存在明显的性能问题
共 2 条评论8 - MavenTalker2018-05-08为保证高可用,有时候会引入其他组件,比如keepalive等等,此时keepalive也易容易产生单点问题,于是做主从或其他方案。若其他方案同样存在单点问题,如此往复下去。悲观的看,似乎无止境,更多的时候是个取舍。6
- 邱荣财2020-10-28高性能路线,拆拆拆,拆系统,拆服务,拆微服务,拆函数服务,拆任务,拆进程,拆线程,任务调度,加机器。 高可用路线,合合合,多条链接合起来作为一个线路,主备合起来作为一个系统,主从合起来作为一个系统,多份数据合起来作为一份数据,状态决策,CAP
作者回复: 很有道理������
5 - 威2019-03-18老师你好,高性能和高可用有明确的界限吗,感觉有时候是混着用的。例如现实中我们会使用扩展处理单元的形式来提高性能,但是同时也提高了系统的可用性。比如为了不出现单点,我们会把业务系统双机部署,同时提供无状态服务,上游通过nginx来分流,既提高了性能,也能在某台机down掉时,另一个节点也能提高服务,从而达到高可用目的
作者回复: 概念上有明确的界限,但本质上都是冗余更多物理硬件,所以很多时候两者可以同时考虑
共 2 条评论5 - Joker2018-05-25高性能是为了达到一个量化的目标,通常我们会有各种不同的办法去实现,抛开消耗来说,方法有很多种,就像上篇讲到的,粗暴加机器,优雅划分等;但是高可用是为了规避一个非量化的抽象bug场景集合,这些不都是能提前预测到的,所以高可用一般来说都会比高性能复杂!
作者回复: 是的,通俗来讲,高性能是土豪,有钱可以任性;高可用是文豪,需要日积月累修炼😃
5