11 | 排序(上):为什么插入排序比冒泡排序更受欢迎?
下载APP
关闭
渠道合作
推荐作者
11 | 排序(上):为什么插入排序比冒泡排序更受欢迎?
2018-10-15 王争 来自北京
《数据结构与算法之美》
课程介绍
讲述:冯永吉
时长22:57大小20.96M
排序对于任何一个程序员来说,可能都不会陌生。你学的第一个算法,可能就是排序。大部分编程语言中,也都提供了排序函数。在平常的项目中,我们也经常会用到排序。排序非常重要,所以我会花多一点时间来详细讲一讲经典的排序算法。
排序算法太多了,有很多可能你连名字都没听说过,比如猴子排序、睡眠排序、面条排序等。我只讲众多排序算法中的一小撮,也是最经典的、最常用的:冒泡排序、插入排序、选择排序、归并排序、快速排序、计数排序、基数排序、桶排序。我按照时间复杂度把它们分成了三类,分三节课来讲解。
带着问题去学习,是最有效的学习方法。所以按照惯例,我还是先给你出一个思考题:插入排序和冒泡排序的时间复杂度相同,都是 O(n2),在实际的软件开发里,为什么我们更倾向于使用插入排序算法而不是冒泡排序算法呢?
你可以先思考一两分钟,带着这个问题,我们开始今天的内容!
如何分析一个“排序算法”?
学习排序算法,我们除了学习它的算法原理、代码实现之外,更重要的是要学会如何评价、分析一个排序算法。那分析一个排序算法,要从哪几个方面入手呢?
排序算法的执行效率
对于排序算法执行效率的分析,我们一般会从这几个方面来衡量:
1. 最好情况、最坏情况、平均情况时间复杂度
我们在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。除此之外,你还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。
为什么要区分这三种时间复杂度呢?第一,有些排序算法会区分,为了好对比,所以我们最好都做一下区分。第二,对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。
2. 时间复杂度的系数、常数 、低阶
我们知道,时间复杂度反映的是数据规模 n 很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是 10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。
3. 比较次数和交换(或移动)次数
这一节和下一节讲的都是基于比较的排序算法。基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。
排序算法的内存消耗
我们前面讲过,算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。我们今天讲的三种排序算法,都是原地排序算法。
排序算法的稳定性
仅仅用执行效率和内存消耗来衡量排序算法的好坏是不够的。针对排序算法,我们还有一个重要的度量指标,稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。
我通过一个例子来解释一下。比如我们有一组数据 2,9,3,4,8,3,按照大小排序之后就是 2,3,3,4,8,9。
这组数据里有两个 3。经过某种排序算法排序之后,如果两个 3 的前后顺序没有改变,那我们就把这种排序算法叫作稳定的排序算法;如果前后顺序发生变化,那对应的排序算法就叫作不稳定的排序算法。
你可能要问了,两个 3 哪个在前,哪个在后有什么关系啊,稳不稳定又有什么关系呢?为什么要考察排序算法的稳定性呢?
很多数据结构和算法课程,在讲排序的时候,都是用整数来举例,但在真正软件开发中,我们要排序的往往不是单纯的整数,而是一组对象,我们需要按照对象的某个 key 来排序。
比如说,我们现在要给电商交易系统中的“订单”排序。订单有两个属性,一个是下单时间,另一个是订单金额。如果我们现在有 10 万条订单数据,我们希望按照金额从小到大对订单数据排序。对于金额相同的订单,我们希望按照下单时间从早到晚有序。对于这样一个排序需求,我们怎么来做呢?
最先想到的方法是:我们先按照金额对订单数据进行排序,然后,再遍历排序之后的订单数据,对于每个金额相同的小区间再按照下单时间排序。这种排序思路理解起来不难,但是实现起来会很复杂。
借助稳定排序算法,这个问题可以非常简洁地解决。解决思路是这样的:我们先按照下单时间给订单排序,注意是按照下单时间,不是金额。排序完成之后,我们用稳定排序算法,按照订单金额重新排序。两遍排序之后,我们得到的订单数据就是按照金额从小到大排序,金额相同的订单按照下单时间从早到晚排序的。为什么呢?
稳定排序算法可以保持金额相同的两个对象,在排序之后的前后顺序不变。第一次排序之后,所有的订单按照下单时间从早到晚有序了。在第二次排序中,我们用的是稳定的排序算法,所以经过第二次排序之后,相同金额的订单仍然保持下单时间从早到晚有序。
冒泡排序(Bubble Sort)
我们从冒泡排序开始,学习今天的三种排序算法。
冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。
我用一个例子,带你看下冒泡排序的整个过程。我们要对一组数据 4,5,6,3,2,1,从小到大进行排序。第一次冒泡操作的详细过程就是这样:
可以看出,经过一次冒泡操作之后,6 这个元素已经存储在正确的位置上。要想完成所有数据的排序,我们只要进行 6 次这样的冒泡操作就行了。
实际上,刚讲的冒泡过程还可以优化。当某次冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作。我这里还有另外一个例子,这里面给 6 个元素排序,只需要 4 次冒泡操作就可以了。
冒泡排序算法的原理比较容易理解,具体的代码我贴到下面,你可以结合着代码来看我前面讲的原理。
现在,结合刚才我分析排序算法的三个方面,我有三个问题要问你。
第一,冒泡排序是原地排序算法吗?
冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为 O(1),是一个原地排序算法。
第二,冒泡排序是稳定的排序算法吗?
在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以冒泡排序是稳定的排序算法。
第三,冒泡排序的时间复杂度是多少?
最好情况下,要排序的数据已经是有序的了,我们只需要进行一次冒泡操作,就可以结束了,所以最好情况时间复杂度是 O(n)。而最坏的情况是,要排序的数据刚好是倒序排列的,我们需要进行 n 次冒泡操作,所以最坏情况时间复杂度为 O(n2)。
最好、最坏情况下的时间复杂度很容易分析,那平均情况下的时间复杂是多少呢?我们前面讲过,平均时间复杂度就是加权平均期望时间复杂度,分析的时候要结合概率论的知识。
对于包含 n 个数据的数组,这 n 个数据就有 n! 种排列方式。不同的排列方式,冒泡排序执行的时间肯定是不同的。比如我们前面举的那两个例子,其中一个要进行 6 次冒泡,而另一个只需要 4 次。如果用概率论方法定量分析平均时间复杂度,涉及的数学推理和计算就会很复杂。我这里还有一种思路,通过“有序度”和“逆序度”这两个概念来进行分析。
有序度是数组中具有有序关系的元素对的个数。有序元素对用数学表达式表示就是这样:
同理,对于一个倒序排列的数组,比如 6,5,4,3,2,1,有序度是 0;对于一个完全有序的数组,比如 1,2,3,4,5,6,有序度就是 n*(n-1)/2,也就是 15。我们把这种完全有序的数组的有序度叫作满有序度。
逆序度的定义正好跟有序度相反(默认从小到大为有序),我想你应该已经想到了。关于逆序度,我就不举例子讲了。你可以对照我讲的有序度的例子自己看下。
关于这三个概念,我们还可以得到一个公式:逆序度 = 满有序度 - 有序度。我们排序的过程就是一种增加有序度,减少逆序度的过程,最后达到满有序度,就说明排序完成了。
我还是拿前面举的那个冒泡排序的例子来说明。要排序的数组的初始状态是 4,5,6,3,2,1 ,其中,有序元素对有 (4,5) (4,6)(5,6),所以有序度是 3。n=6,所以排序完成之后终态的满有序度为 n*(n-1)/2=15。
冒泡排序包含两个操作原子,比较和交换。每交换一次,有序度就加 1。不管算法怎么改进,交换次数总是确定的,即为逆序度,也就是n*(n-1)/2–初始有序度。此例中就是 15–3=12,要进行 12 次交换操作。
对于包含 n 个数据的数组进行冒泡排序,平均交换次数是多少呢?最坏情况下,初始状态的有序度是 0,所以要进行 n*(n-1)/2 次交换。最好情况下,初始状态的有序度是 n*(n-1)/2,就不需要进行交换。我们可以取个中间值 n*(n-1)/4,来表示初始有序度既不是很高也不是很低的平均情况。
换句话说,平均情况下,需要 n*(n-1)/4 次交换操作,比较操作肯定要比交换操作多,而复杂度的上限是 O(n2),所以平均情况下的时间复杂度就是 O(n2)。
这个平均时间复杂度推导过程其实并不严格,但是很多时候很实用,毕竟概率论的定量分析太复杂,不太好用。等我们讲到快排的时候,我还会再次用这种“不严格”的方法来分析平均时间复杂度。
插入排序(Insertion Sort)
我们先来看一个问题。一个有序的数组,我们往里面添加一个新的数据后,如何继续保持数据有序呢?很简单,我们只要遍历数组,找到数据应该插入的位置将其插入即可。
这是一个动态排序的过程,即动态地往有序集合中添加数据,我们可以通过这种方法保持集合中的数据一直有序。而对于一组静态数据,我们也可以借鉴上面讲的插入方法,来进行排序,于是就有了插入排序算法。
那插入排序具体是如何借助上面的思想来实现排序的呢?
首先,我们将数组中的数据分为两个区间,已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。
如图所示,要排序的数据是 4,5,6,1,3,2,其中左侧为已排序区间,右侧是未排序区间。
插入排序也包含两种操作,一种是元素的比较,一种是元素的移动。当我们需要将一个数据 a 插入到已排序区间时,需要拿 a 与已排序区间的元素依次比较大小,找到合适的插入位置。找到插入点之后,我们还需要将插入点之后的元素顺序往后移动一位,这样才能腾出位置给元素 a 插入。
对于不同的查找插入点方法(从头到尾、从尾到头),元素的比较次数是有区别的。但对于一个给定的初始序列,移动操作的次数总是固定的,就等于逆序度。
为什么说移动次数就等于逆序度呢?我拿刚才的例子画了一个图表,你一看就明白了。满有序度是 n*(n-1)/2=15,初始序列的有序度是 5,所以逆序度是 10。插入排序中,数据移动的个数总和也等于 10=3+3+4。
插入排序的原理也很简单吧?我也将代码实现贴在这里,你可以结合着代码再看下。
现在,我们来看点稍微复杂的东西。我这里还是有三个问题要问你。
第一,插入排序是原地排序算法吗?
从实现过程可以很明显地看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是 O(1),也就是说,这是一个原地排序算法。
第二,插入排序是稳定的排序算法吗?
在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。
第三,插入排序的时间复杂度是多少?
如果要排序的数据已经是有序的,我们并不需要搬移任何数据。如果我们从尾到头在有序数据组里面查找插入位置,每次只需要比较一个数据就能确定插入的位置。所以这种情况下,最好是时间复杂度为 O(n)。注意,这里是从尾到头遍历已经有序的数据。
如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,所以最坏情况时间复杂度为 O(n2)。
还记得我们在数组中插入一个数据的平均时间复杂度是多少吗?没错,是 O(n)。所以,对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行 n 次插入操作,所以平均时间复杂度为 O(n2)。
选择排序(Selection Sort)
选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。
照例,也有三个问题需要你思考,不过前面两种排序算法我已经分析得很详细了,这里就直接公布答案了。
首先,选择排序空间复杂度为 O(1),是一种原地排序算法。选择排序的最好情况时间复杂度、最坏情况和平均情况时间复杂度都为 O(n2)。你可以自己来分析看看。
那选择排序是稳定的排序算法吗?这个问题我着重来说一下。
答案是否定的,选择排序是一种不稳定的排序算法。从我前面画的那张图中,你可以看出来,选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。
比如 5,8,5,2,9 这样一组数据,使用选择排序算法来排序的话,第一次找到最小元素 2,与第一个 5 交换位置,那第一个 5 和中间的 5 顺序就变了,所以就不稳定了。正是因此,相对于冒泡排序和插入排序,选择排序就稍微逊色了。
解答开篇
基本的知识都讲完了,我们来看开篇的问题:冒泡排序和插入排序的时间复杂度都是 O(n2),都是原地排序算法,为什么插入排序要比冒泡排序更受欢迎呢?
我们前面分析冒泡排序和插入排序的时候讲到,冒泡排序不管怎么优化,元素交换的次数是一个固定值,是原始数据的逆序度。插入排序是同样的,不管怎么优化,元素移动的次数也等于原始数据的逆序度。
但是,从代码实现上来看,冒泡排序的数据交换要比插入排序的数据移动要复杂,冒泡排序需要 3 个赋值操作,而插入排序只需要 1 个。我们来看这段操作:
我们把执行一个赋值语句的时间粗略地计为单位时间(unit_time),然后分别用冒泡排序和插入排序对同一个逆序度是 K 的数组进行排序。用冒泡排序,需要 K 次交换操作,每次需要 3 个赋值语句,所以交换操作总耗时就是 3*K 单位时间。而插入排序中数据移动操作只需要 K 个单位时间。
这个只是我们非常理论的分析,为了实验,针对上面的冒泡排序和插入排序的 Java 代码,我写了一个性能对比测试程序,随机生成 10000 个数组,每个数组中包含 200 个数据,然后在我的机器上分别用冒泡和插入排序算法来排序,冒泡排序算法大约 700ms 才能执行完成,而插入排序只需要 100ms 左右就能搞定!
所以,虽然冒泡排序和插入排序在时间复杂度上是一样的,都是 O(n2),但是如果我们希望把性能优化做到极致,那肯定首选插入排序。插入排序的算法思路也有很大的优化空间,我们只是讲了最基础的一种。如果你对插入排序的优化感兴趣,可以自行学习一下希尔排序。
内容小结
要想分析、评价一个排序算法,需要从执行效率、内存消耗和稳定性三个方面来看。因此,这一节,我带你分析了三种时间复杂度是 O(n2) 的排序算法,冒泡排序、插入排序、选择排序。你需要重点掌握的是它们的分析方法。
这三种时间复杂度为 O(n2) 的排序算法中,冒泡排序、选择排序,可能就纯粹停留在理论的层面了,学习的目的也只是为了开拓思维,实际开发中应用并不多,但是插入排序还是挺有用的。后面讲排序优化的时候,我会讲到,有些编程语言中的排序函数的实现原理会用到插入排序算法。
今天讲的这三种排序算法,实现代码都非常简单,对于小规模数据的排序,用起来非常高效。但是在大规模数据排序的时候,这个时间复杂度还是稍微有点高,所以我们更倾向于用下一节要讲的时间复杂度为 O(nlogn) 的排序算法。
课后思考
我们讲过,特定算法是依赖特定的数据结构的。我们今天讲的几种排序算法,都是基于数组实现的。如果数据存储在链表中,这三种排序算法还能工作吗?如果能,那相应的时间、空间复杂度又是多少呢?
欢迎留言和我分享,我会第一时间给你反馈。
分享给需要的人,Ta购买本课程,你将得20元
生成海报并分享
赞 226
提建议
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
上一篇
10 | 递归:如何用三行代码找到“最终推荐人”?
下一篇
12 | 排序(下):如何用快排思想在O(n)内查找第K大元素?
精选留言(430)
- 双木公子置顶2018-10-15对于老师所提课后题,觉得应该有个前提,是否允许修改链表的节点value值,还是只能改变节点的位置。一般而言,考虑只能改变节点位置,冒泡排序相比于数组实现,比较次数一致,但交换时操作更复杂;插入排序,比较次数一致,不需要再有后移操作,找到位置后可以直接插入,但排序完毕后可能需要倒置链表;选择排序比较次数一致,交换操作同样比较麻烦。综上,时间复杂度和空间复杂度并无明显变化,若追求极致性能,冒泡排序的时间复杂度系数会变大,插入排序系数会减小,选择排序无明显变化。展开
作者回复: 👍 回答的很好 可以作为标准答案了 同学们把这条顶上去吧
共 44 条评论1823 - Monday2018-10-16本节从昨天更新到今天,一共前前后后认认真真听了五遍,再到今天晚上花3小时把3个排序算法实现,做了冒泡排序与插入排序的测试实验。随机生成二维数组a[200][10000]和b[200][10000](a,b数组数据一致),然后在我的机器上分别用冒泡和插入排序算法来排序(a数组冒泡,b数组插入),冒泡排序算法大约 16332ms 才能执行完成,而插入排序只需要 2228ms 左右。 总结一句:听五遍不如敲一遍!展开共 11 条评论409
- 德拉2018-10-27有同学提到的算法过程动态图,可以看看这个https://visualgo.net/共 31 条评论307
- Smallfly2019-03-02二刷了下排序,有了一些新的体会。 冒泡、插入、选择排序都有一个共同点,将待排序数列分为已排序和未排序两部分。在未排序的部分中查找一个最值,放到已排序数列的恰当位置。 具体到代码层面,外层循环的变量用于分割已排序和未排序数,内层循环的变量用于在未排序数中查找。从思路上看,这三种算法其实是一样的,所以时间复杂度也相同。展开共 10 条评论216
- 靑城2018-10-15总结 一、排序方法与复杂度归类 (1)几种最经典、最常用的排序方法:冒泡排序、插入排序、选择排序、快速排序、归并排序、计数排序、基数排序、桶排序。 (2)复杂度归类 冒泡排序、插入排序、选择排序 O(n^2) 快速排序、归并排序 O(nlogn) 计数排序、基数排序、桶排序 O(n) 二、如何分析一个“排序算法”? <1>算法的执行效率 1. 最好、最坏、平均情况时间复杂度。 2. 时间复杂度的系数、常数和低阶。 3. 比较次数,交换(或移动)次数。 <2>排序算法的稳定性 1. 稳定性概念:如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。 2. 稳定性重要性:可针对对象的多种属性进行有优先级的排序。 3. 举例:给电商交易系统中的“订单”排序,按照金额大小对订单数据排序,对于相同金额的订单以下单时间早晚排序。用稳定排序算法可简洁地解决。先按照下单时间给订单排序,排序完成后用稳定排序算法按照订单金额重新排序。 <3>排序算法的内存损耗 原地排序算法:特指空间复杂度是O(1)的排序算法。 三、冒泡排序 冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求,如果不满足就让它俩互换。 稳定性:冒泡排序是稳定的排序算法。 空间复杂度:冒泡排序是原地排序算法。 时间复杂度: 1. 最好情况(满有序度):O(n)。 2. 最坏情况(满逆序度):O(n^2)。 3. 平均情况: “有序度”和“逆序度”:对于一个不完全有序的数组,如4,5,6,3,2,1,有序元素对为3个(4,5),(4,6),(5,6),有序度为3,逆序度为12;对于一个完全有序的数组,如1,2,3,4,5,6,有序度就是n*(n-1)/2,也就是15,称作满有序度;逆序度=满有序度-有序度;冒泡排序、插入排序交换(或移动)次数=逆序度。 最好情况下初始有序度为n*(n-1)/2,最坏情况下初始有序度为0,则平均初始有序度为n*(n-1)/4,即交换次数为n*(n-1)/4,因交换次数<比较次数<最坏情况时间复杂度,所以平均时间复杂度为O(n^2)。 四、插入排序 插入排序将数组数据分成已排序区间和未排序区间。初始已排序区间只有一个元素,即数组第一个元素。在未排序区间取出一个元素插入到已排序区间的合适位置,直到未排序区间为空。 空间复杂度:插入排序是原地排序算法。 时间复杂度: 1. 最好情况:O(n)。 2. 最坏情况:O(n^2)。 3. 平均情况:O(n^2)(往数组中插入一个数的平均时间复杂度是O(n),一共重复n次)。 稳定性:插入排序是稳定的排序算法。 五、选择排序 选择排序将数组分成已排序区间和未排序区间。初始已排序区间为空。每次从未排序区间中选出最小的元素插入已排序区间的末尾,直到未排序区间为空。 空间复杂度:选择排序是原地排序算法。 时间复杂度:(都是O(n^2)) 1. 最好情况:O(n^2)。 2. 最坏情况:O(n^2)。 3. 平均情况:O(n^2)。 稳定性:选择排序不是稳定的排序算法。 思考 选择排序和插入排序的时间复杂度相同,都是O(n^2),在实际的软件开发中,为什么我们更倾向于使用插入排序而不是冒泡排序算法呢? 答:从代码实现上来看,冒泡排序的数据交换要比插入排序的数据移动要复杂,冒泡排序需要3个赋值操作,而插入排序只需要1个,所以在对相同数组进行排序时,冒泡排序的运行时间理论上要长于插入排序。展开127
- myrabbit2018-10-15王老师,我发现你文章中的图画的很漂亮,字也写得很漂亮,图文结合的形式对于表达的帮助真的很大!有时候做笔记也可以用此方法,请问你的图文是用什么软件画的?
作者回复: 不是我画的 大编辑画的
共 9 条评论102 - 陈问渔2018-11-22https://mp.weixin.qq.com/s/HQg3BzzQfJXcWyltsgOfCQ 这里面的图解排序算法,很形象。java实现的代码共 1 条评论67
- 流风之回雪2018-11-02a[j+1] = value; // 插入数据,这条语句弄了好久才明白,一直以为 j的值最小为0,那么a[j+1]最小就是a[1],不过这样赋值逻辑上就有问题,后来debug了一下,发现j是可以为-1的,a[j+1]最小为a[0],这样逻辑上就通了,果然多敲代码才能弄明白勒
作者回复: 👍钻研精神
共 15 条评论57 - allean2018-11-13每一次看文章都要至少看三遍,代码实现也至少写三遍,不是追求量,是真的感觉每一次的体会都更加不一样😁
作者回复: 👍
共 2 条评论54 - 姜威2018-10-22总结: 一、几种经典排序算法及其时间复杂度级别 冒泡、插入、选择 O(n^2) 基于比较 快排、归并 O(nlogn) 基于比较 计数、基数、桶 O(n) 不基于比较 二、如何分析一个排序算法? 1.学习排序算法的思路?明确原理、掌握实现以及分析性能。 2.如何分析排序算法性能?从执行效率、内存消耗以及稳定性3个方面分析排序算法的性能。 3.执行效率:从以下3个方面来衡量 1)最好情况、最坏情况、平均情况时间复杂度 2)时间复杂度的系数、常数、低阶:排序的数据量比较小时考虑 3)比较次数和交换(或移动)次数 4.内存消耗:通过空间复杂度来衡量。针对排序算法的空间复杂度,引入原地排序的概念,原地排序算法就是指空间复杂度为O(1)的排序算法。 5.稳定性:如果待排序的序列中存在值等的元素,经过排序之后,相等元素之间原有的先后顺序不变,就说明这个排序算法时稳定的。 三、冒泡排序 1.排序原理 1)冒泡排序只会操作相邻的两个数据。 2)对相邻两个数据进行比较,看是否满足大小关系要求,若不满足让它俩互换。 3)一次冒泡会让至少一个元素移动到它应该在的位置,重复n次,就完成了n个数据的排序工作。 4)优化:若某次冒泡不存在数据交换,则说明已经达到完全有序,所以终止冒泡。 2.代码实现(见下一条留言) 3.性能分析 1)执行效率:最小时间复杂度、最大时间复杂度、平均时间复杂度 最小时间复杂度:数据完全有序时,只需进行一次冒泡操作即可,时间复杂度是O(n)。 最大时间复杂度:数据倒序排序时,需要n次冒泡操作,时间复杂度是O(n^2)。 平均时间复杂度:通过有序度和逆序度来分析。 什么是有序度? 有序度是数组中具有有序关系的元素对的个数,比如[2,4,3,1,5,6]这组数据的有序度就是11,分别是[2,4][2,3][2,5][2,6][4,5][4,6][3,5][3,6][1,5][1,6][5,6]。同理,对于一个倒序数组,比如[6,5,4,3,2,1],有序度是0;对于一个完全有序的数组,比如[1,2,3,4,5,6],有序度为n*(n-1)/2,也就是15,完全有序的情况称为满有序度。 什么是逆序度?逆序度的定义正好和有序度相反。核心公式:逆序度=满有序度-有序度。 排序过程,就是有序度增加,逆序度减少的过程,最后达到满有序度,就说明排序完成了。 冒泡排序包含两个操作原子,即比较和交换,每交换一次,有序度加1。不管算法如何改进,交换的次数总是确定的,即逆序度。 对于包含n个数据的数组进行冒泡排序,平均交换次数是多少呢?最坏的情况初始有序度为0,所以要进行n*(n-1)/2交换。最好情况下,初始状态有序度是n*(n-1)/2,就不需要进行交互。我们可以取个中间值n*(n-1)/4,来表示初始有序度既不是很高也不是很低的平均情况。 换句话说,平均情况下,需要n*(n-1)/4次交换操作,比较操作可定比交换操作多,而复杂度的上限是O(n^2),所以平均情况时间复杂度就是O(n^2)。 以上的分析并不严格,但很实用,这就够了。 2)空间复杂度:每次交换仅需1个临时变量,故空间复杂度为O(1),是原地排序算法。 3)算法稳定性:如果两个值相等,就不会交换位置,故是稳定排序算法。 四、插入排序 1.算法原理 首先,我们将数组中的数据分为2个区间,即已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想就是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间中的元素一直有序。重复这个过程,直到未排序中元素为空,算法结束。 2.代码实现(见下一条留言) 3.性能分析 1)时间复杂度:最好、最坏、平均情况 如果要排序的数组已经是有序的,我们并不需要搬移任何数据。只需要遍历一遍数组即可,所以时间复杂度是O(n)。如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,因此时间复杂度是O(n^2)。而在一个数组中插入一个元素的平均时间复杂都是O(n),插入排序需要n次插入,所以平均时间复杂度是O(n^2)。 2)空间复杂度:从上面的代码可以看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是O(1),是原地排序算法。 3)算法稳定性:在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现的元素的后面,这样就保持原有的顺序不变,所以是稳定的。展开
作者回复: 👍
41 - Jo2018-10-15冒泡排序的外层循环次数只需要n-1次,此时第1个数字在上一次已经比较过,肯定比第2个小(或大),所以第n次没必要比较了共 2 条评论28
- WL2018-12-07把该讲内容总结为几个问题, 大家复习的时候可以先尝试回答这些问题检查自己的掌握程度: 1. 分析排序算法的三个维度都是什么? 2. 从算法执行效率这个维度出发可以从哪三个方面进行衡量? 3. 原地排序的概念是什么? 4. 什么是排序的稳定性, 稳定性排序算法和不稳定排序算法的区别在哪里? 5. 数组的满序度, 有序度, 逆序度概念各是什么? 如何计算? 6. 冒泡排序的实现思路是怎样的, 请实现冒泡排序算法? 7. 冒泡排序的为什么是原地排序算法, 为什么是稳定排序算法, 最好最坏,平均时间复杂度各是多少? 8. 插入排序的实现思路是怎样的, 请实现插入排序算法? 9. 插入排序的为什么是原地排序算法, 为什么是原地排序算法, 最好最坏,平均时间复杂度各是多少? 10. 选择排序的实现思路是怎样的, 请实现选择排序算法? 11. 选择排序的为什么是原地排序算法, 为什么不是稳定排序算法, 最好最坏,平均时间复杂度各是多少? 12. 插入排序比冒泡排序的优势在哪里展开共 1 条评论22
- 醉比2018-10-15大家多思考多吸收吧。。。。我得多吸收一会20
- 王木公2019-08-08感觉有个问题始终没有解决。前人是如何想出的这些算法?或者说是在怎样的环境下,作者经历了怎样的心路历程想出了这个算法。我认为知道这个很重要,尽管现在学这些算法觉得理所应当,但当时间久了仍然会忘记,尤其是那些细节临界点,人的大脑适合记忆有关联性的东西,这些算法则属于不擅长记忆的创造性内容,如果没有历史那些前提,相信很难根本性掌握。
作者回复: 很难知道人家是怎么想到的,你要求有点高了,说不定灵机一动就想到了。
共 10 条评论19 - 姜威2018-10-22五、选择排序 1.算法原理 选择排序算法也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,并将其放置到已排序区间的末尾。 2.代码实现(见下一条留言) 3.性能分析 1)时间复杂度:最好、最坏、平均情况 选择排序的最好、最坏、平均情况时间复杂度都是O(n^2)。为什么?因为无论是否有序,每个循环都会完整执行,没得商量。 2)空间复杂度: 选择排序算法空间复杂度是O(1),是一种原地排序算法。 3)算法稳定性: 选择排序算法不是一种稳定排序算法,比如[5,8,5,2,9]这个数组,使用选择排序算法第一次找到的最小元素就是2,与第一个位置的元素5交换位置,那第一个5和中间的5的顺序就变量,所以就不稳定了。正因如此,相对于冒泡排序和插入排序,选择排序就稍微逊色了。 六、思考 1.冒泡排序和插入排序的时间复杂度都是 O(n^2),都是原地排序算法,为什么插入排序要比冒泡排序更受欢迎呢? 冒泡排序移动数据有3条赋值语句,而选择排序的交换位置的只有1条赋值语句,因此在有序度相同的情况下,冒泡排序时间复杂度是选择排序的3倍,所以,选择排序性能更好。 2.如果数据存储在链表中,这三种排序算法还能工作吗?如果能,那相应的时间、空间复杂度又是多少呢? 代码实现: /** * 冒泡排序 * @param a 待排序数组 * @param n 数组长度 */ public static void bubbleSort(int[] a, int n) { if(n<=0) return ; for (int i = 0; i < n; i++) { //标记一次冒泡是否存在数据交换,若存在,则改为true boolean tag = false; for (int j = 0; j < n-1-i; j++) { if(a[j] > a[j+1]){ int temp = a[j]; a[j] = a[j+1]; a[j+1] = temp; tag = true; } } //若本次冒泡操作未发生数据交换,则终止冒泡操作 if (tag == false) break; } } /** * 插入排序 * @param a 待排序数组 * @param n 表示数组大小 */ public static void insertSort(int[] a, int n) { if(n<=1) return; for(int i=1;i<n;i++){ int value=a[i]; int j=i-1; //找到插入位置 for(;j>0;j--){ if(a[j]>value){ a[j+1]=a[j];//移动数据 } else { break; } } a[j+1]=value;//插入数据 } } /** * 选择排序 * @param a 待排序数组 * @param n 数组长度 */ public static void selectSort(int[] a, int n) { if(n<=0) return; for(int i=0;i<n;i++){ int min=i; for(int j=i;j<n;j++){ if(a[j] < a[min]) min=j; } if(min != i){ int temp=a[i]; a[i]=a[min]; a[min]=temp; } } }展开
作者回复: 👍
共 5 条评论16 - oldman2018-10-16我用python实现了冒泡排序,插入排序,选择排序。地址如下,欢迎大家一起探讨: 冒泡排序:https://github.com/lipeng1991/testdemo/blob/master/40_bubble_sort.py 插入排序:https://github.com/lipeng1991/testdemo/blob/master/41_insert_sort.py 选择排序: https://github.com/lipeng1991/testdemo/blob/master/42_select_sort.py16
- ILoveKindness2019-06-03老师您好,我不是很懂您所置顶的答案中插入排序后要倒置链表的意思,请求解答。
作者回复: 应该是不需要倒置的。
共 3 条评论14 - 峰2018-10-15三种排序算法不涉及随机读取,所以链表是可以实现的,而且时间复杂度空间空间复杂度和数组一样,O(n*n),O(1).共 1 条评论12
- 安静2018-11-09每天坐地铁看一节都有点坚持不下来了,加油。共 3 条评论10
- 星2018-12-22冒泡排序的应该重复n-1次就有序了共 1 条评论9