21 | 哈希算法(上):如何防止数据库中的用户信息被脱库?
下载APP
关闭
渠道合作
推荐作者
21 | 哈希算法(上):如何防止数据库中的用户信息被脱库?
2018-11-07 王争 来自北京
《数据结构与算法之美》
课程介绍
讲述:冯永吉
时长14:49大小13.53M
还记得 2011 年 CSDN 的“脱库”事件吗?当时,CSDN 网站被黑客攻击,超过 600 万用户的注册邮箱和密码明文被泄露,很多网友对 CSDN 明文保存用户密码行为产生了不满。如果你是 CSDN 的一名工程师,你会如何存储用户密码这么重要的数据吗?仅仅 MD5 加密一下存储就够了吗? 要想搞清楚这个问题,就要先弄明白哈希算法。
哈希算法历史悠久,业界著名的哈希算法也有很多,比如 MD5、SHA 等。在我们平时的开发中,基本上都是拿现成的直接用。所以,我今天不会重点剖析哈希算法的原理,也不会教你如何设计一个哈希算法,而是从实战的角度告诉你,在实际的开发中,我们该如何用哈希算法解决问题。
什么是哈希算法?
我们前面几节讲到“散列表”“散列函数”,这里又讲到“哈希算法”,你是不是有点一头雾水?实际上,不管是“散列”还是“哈希”,这都是中文翻译的差别,英文其实就是“Hash”。所以,我们常听到有人把“散列表”叫作“哈希表”“Hash 表”,把“哈希算法”叫作“Hash 算法”或者“散列算法”。那到底什么是哈希算法呢?
哈希算法的定义和原理非常简单,基本上一句话就可以概括了。将任意长度的二进制值串映射为固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。但是,要想设计一个优秀的哈希算法并不容易,根据我的经验,我总结了需要满足的几点要求:
从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法);
对输入数据非常敏感,哪怕原始数据只修改了一个 Bit,最后得到的哈希值也大不相同;
散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小;
哈希算法的执行效率要尽量高效,针对较长的文本,也能快速地计算出哈希值。
这些定义和要求都比较理论,可能还是不好理解,我拿 MD5 这种哈希算法来具体说明一下。
我们分别对“今天我来讲哈希算法”和“jiajia”这两个文本,计算 MD5 哈希值,得到两串看起来毫无规律的字符串(MD5 的哈希值是 128 位的 Bit 长度,为了方便表示,我把它们转化成了 16 进制编码)。可以看出来,无论要哈希的文本有多长、多短,通过 MD5 哈希之后,得到的哈希值的长度都是相同的,而且得到的哈希值看起来像一堆随机数,完全没有规律。
我们再来看两个非常相似的文本,“我今天讲哈希算法!”和“我今天讲哈希算法”。这两个文本只有一个感叹号的区别。如果用 MD5 哈希算法分别计算它们的哈希值,你会发现,尽管只有一字之差,得到的哈希值也是完全不同的。
我在前面也说了,通过哈希算法得到的哈希值,很难反向推导出原始数据。比如上面的例子中,我们就很难通过哈希值“a1fb91ac128e6aa37fe42c663971ac3d”反推出对应的文本“我今天讲哈希算法”。
哈希算法要处理的文本可能是各种各样的。比如,对于非常长的文本,如果哈希算法的计算时间很长,那就只能停留在理论研究的层面,很难应用到实际的软件开发中。比如,我们把今天这篇包含 4000 多个汉字的文章,用 MD5 计算哈希值,用不了 1ms 的时间。
哈希算法的应用非常非常多,我选了最常见的七个,分别是安全加密、唯一标识、数据校验、散列函数、负载均衡、数据分片、分布式存储。这节我们先来看前四个应用。
应用一:安全加密
说到哈希算法的应用,最先想到的应该就是安全加密。最常用于加密的哈希算法是 MD5(MD5 Message-Digest Algorithm,MD5 消息摘要算法)和 SHA(Secure Hash Algorithm,安全散列算法)。
除了这两个之外,当然还有很多其他加密算法,比如 DES(Data Encryption Standard,数据加密标准)、AES(Advanced Encryption Standard,高级加密标准)。
前面我讲到的哈希算法四点要求,对用于加密的哈希算法来说,有两点格外重要。第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要很小。
第一点很好理解,加密的目的就是防止原始数据泄露,所以很难通过哈希值反向推导原始数据,这是一个最基本的要求。所以我着重讲一下第二点。实际上,不管是什么哈希算法,我们只能尽量减少碰撞冲突的概率,理论上是没办法做到完全不冲突的。为什么这么说呢?
这里就基于组合数学中一个非常基础的理论,鸽巢原理(也叫抽屉原理)。这个原理本身很简单,它是说,如果有 10 个鸽巢,有 11 只鸽子,那肯定有 1 个鸽巢中的鸽子数量多于 1 个,换句话说就是,肯定有 2 只鸽子在 1 个鸽巢内。
有了鸽巢原理的铺垫之后,我们再来看,为什么哈希算法无法做到零冲突?
我们知道,哈希算法产生的哈希值的长度是固定且有限的。比如前面举的 MD5 的例子,哈希值是固定的 128 位二进制串,能表示的数据是有限的,最多能表示 2^128 个数据,而我们要哈希的数据是无穷的。基于鸽巢原理,如果我们对 2^128+1 个数据求哈希值,就必然会存在哈希值相同的情况。这里你应该能想到,一般情况下,哈希值越长的哈希算法,散列冲突的概率越低。
为了让你能有个更加直观的感受,我找了两段字符串放在这里。这两段字符串经过 MD5 哈希算法加密之后,产生的哈希值是相同的。
不过,即便哈希算法存在散列冲突的情况,但是因为哈希值的范围很大,冲突的概率极低,所以相对来说还是很难破解的。像 MD5,有 2^128 个不同的哈希值,这个数据已经是一个天文数字了,所以散列冲突的概率要小于 1/2^128。
如果我们拿到一个 MD5 哈希值,希望通过毫无规律的穷举的方法,找到跟这个 MD5 值相同的另一个数据,那耗费的时间应该是个天文数字。所以,即便哈希算法存在冲突,但是在有限的时间和资源下,哈希算法还是很难被破解的。
除此之外,没有绝对安全的加密。越复杂、越难破解的加密算法,需要的计算时间也越长。比如 SHA-256 比 SHA-1 要更复杂、更安全,相应的计算时间就会比较长。密码学界也一直致力于找到一种快速并且很难被破解的哈希算法。我们在实际的开发过程中,也需要权衡破解难度和计算时间,来决定究竟使用哪种加密算法。
应用二:唯一标识
我先来举一个例子。如果要在海量的图库中,搜索一张图是否存在,我们不能单纯地用图片的元信息(比如图片名称)来比对,因为有可能存在名称相同但图片内容不同,或者名称不同图片内容相同的情况。那我们该如何搜索呢?
我们知道,任何文件在计算中都可以表示成二进制码串,所以,比较笨的办法就是,拿要查找的图片的二进制码串与图库中所有图片的二进制码串一一比对。如果相同,则说明图片在图库中存在。但是,每个图片小则几十 KB、大则几 MB,转化成二进制是一个非常长的串,比对起来非常耗时。有没有比较快的方法呢?
我们可以给每一个图片取一个唯一标识,或者说信息摘要。比如,我们可以从图片的二进制码串开头取 100 个字节,从中间取 100 个字节,从最后再取 100 个字节,然后将这 300 个字节放到一块,通过哈希算法(比如 MD5),得到一个哈希字符串,用它作为图片的唯一标识。通过这个唯一标识来判定图片是否在图库中,这样就可以减少很多工作量。
如果还想继续提高效率,我们可以把每个图片的唯一标识,和相应的图片文件在图库中的路径信息,都存储在散列表中。当要查看某个图片是不是在图库中的时候,我们先通过哈希算法对这个图片取唯一标识,然后在散列表中查找是否存在这个唯一标识。
如果不存在,那就说明这个图片不在图库中;如果存在,我们再通过散列表中存储的文件路径,获取到这个已经存在的图片,跟现在要插入的图片做全量的比对,看是否完全一样。如果一样,就说明已经存在;如果不一样,说明两张图片尽管唯一标识相同,但是并不是相同的图片。
应用三:数据校验
电驴这样的 BT 下载软件你肯定用过吧?我们知道,BT 下载的原理是基于 P2P 协议的。我们从多个机器上并行下载一个 2GB 的电影,这个电影文件可能会被分割成很多文件块(比如可以分成 100 块,每块大约 20MB)。等所有的文件块都下载完成之后,再组装成一个完整的电影文件就行了。
我们知道,网络传输是不安全的,下载的文件块有可能是被宿主机器恶意修改过的,又或者下载过程中出现了错误,所以下载的文件块可能不是完整的。如果我们没有能力检测这种恶意修改或者文件下载出错,就会导致最终合并后的电影无法观看,甚至导致电脑中毒。现在的问题是,如何来校验文件块的安全、正确、完整呢?
具体的 BT 协议很复杂,校验方法也有很多,我来说其中的一种思路。
我们通过哈希算法,对 100 个文件块分别取哈希值,并且保存在种子文件中。我们在前面讲过,哈希算法有一个特点,对数据很敏感。只要文件块的内容有一丁点儿的改变,最后计算出的哈希值就会完全不同。所以,当文件块下载完成之后,我们可以通过相同的哈希算法,对下载好的文件块逐一求哈希值,然后跟种子文件中保存的哈希值比对。如果不同,说明这个文件块不完整或者被篡改了,需要再重新从其他宿主机器上下载这个文件块。
应用四:散列函数
前面讲了很多哈希算法的应用,实际上,散列函数也是哈希算法的一种应用。
我们前两节讲到,散列函数是设计一个散列表的关键。它直接决定了散列冲突的概率和散列表的性能。不过,相对哈希算法的其他应用,散列函数对于散列算法冲突的要求要低很多。即便出现个别散列冲突,只要不是过于严重,我们都可以通过开放寻址法或者链表法解决。
不仅如此,散列函数对于散列算法计算得到的值,是否能反向解密也并不关心。散列函数中用到的散列算法,更加关注散列后的值是否能平均分布,也就是,一组数据是否能均匀地散列在各个槽中。除此之外,散列函数执行的快慢,也会影响散列表的性能,所以,散列函数用的散列算法一般都比较简单,比较追求效率。
解答开篇
好了,有了前面的基础,现在你有没有发现开篇的问题其实很好解决?
我们可以通过哈希算法,对用户密码进行加密之后再存储,不过最好选择相对安全的加密算法,比如 SHA 等(因为 MD5 已经号称被破解了)。不过仅仅这样加密之后存储就万事大吉了吗?
字典攻击你听说过吗?如果用户信息被“脱库”,黑客虽然拿到是加密之后的密文,但可以通过“猜”的方式来破解密码,这是因为,有些用户的密码太简单。比如很多人习惯用 00000、123456 这样的简单数字组合做密码,很容易就被猜中。
那我们就需要维护一个常用密码的字典表,把字典中的每个密码用哈希算法计算哈希值,然后拿哈希值跟脱库后的密文比对。如果相同,基本上就可以认为,这个加密之后的密码对应的明文就是字典中的这个密码。(注意,这里说是的是“基本上可以认为”,因为根据我们前面的学习,哈希算法存在散列冲突,也有可能出现,尽管密文一样,但是明文并不一样的情况。)
针对字典攻击,我们可以引入一个盐(salt),跟用户的密码组合在一起,增加密码的复杂度。我们拿组合之后的字符串来做哈希算法加密,将它存储到数据库中,进一步增加破解的难度。不过我这里想多说一句,我认为安全和攻击是一种博弈关系,不存在绝对的安全。所有的安全措施,只是增加攻击的成本而已。
内容小结
今天的内容比较偏实战,我讲到了哈希算法的四个应用场景。我带你来回顾一下。
第一个应用是唯一标识,哈希算法可以对大数据做信息摘要,通过一个较短的二进制编码来表示很大的数据。
第二个应用是用于校验数据的完整性和正确性。
第三个应用是安全加密,我们讲到任何哈希算法都会出现散列冲突,但是这个冲突概率非常小。越是复杂哈希算法越难破解,但同样计算时间也就越长。所以,选择哈希算法的时候,要权衡安全性和计算时间来决定用哪种哈希算法。
第四个应用是散列函数,这个我们前面讲散列表的时候已经详细地讲过,它对哈希算法的要求非常特别,更加看重的是散列的平均性和哈希算法的执行效率。
课后思考
现在,区块链是一个很火的领域,它被很多人神秘化,不过其底层的实现原理并不复杂。其中,哈希算法就是它的一个非常重要的理论基础。你能讲一讲区块链使用的是哪种哈希算法吗?是为了解决什么问题而使用的呢?
欢迎留言和我分享,我会第一时间给你反馈。
分享给需要的人,Ta购买本课程,你将得20元
生成海报并分享
赞 109
提建议
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
上一篇
20 | 散列表(下):为什么散列表和链表经常会一起使用?
下一篇
22 | 哈希算法(下):哈希算法在分布式系统中有哪些应用?
精选留言(139)
- Smallfly2018-11-07课后思考: 区块链是一块块区块组成的,每个区块分为两部分:区块头和区块体。 区块头保存着 自己区块体 和 上一个区块头 的哈希值。 因为这种链式关系和哈希值的唯一性,只要区块链上任意一个区块被修改过,后面所有区块保存的哈希值就不对了。 区块链使用的是 SHA256 哈希算法,计算哈希值非常耗时,如果要篡改一个区块,就必须重新计算该区块后面所有的区块的哈希值,短时间内几乎不可能做到。展开
作者回复: 👍
共 20 条评论612 - 雪无痕2018-11-07除了hash+salt,现在大多公司都采用无论密码长度多少,计算字符串hash时间都固定或者足够慢的算法如PBKDF2WithHmacSHA1,来降低硬件计算hash速度,减少不同长度字符串计算hash所需时间不一样而泄漏字符串长度信息,进一步减少风险。共 6 条评论250
- oyt2018-11-13加salt,也可理解为为密码加点佐料后再进行hash运算。比如原密码是123456,不加盐的情况加密后假设是是xyz。 黑客拿到脱机的数据后,通过彩虹表匹配可以轻松破解常用密码。如果加盐,密码123456加盐后可能是12ng34qq56zz,再对加盐后的密码进行hash后值就与原密码hash后的值完全不同了。而且加盐的方式有很多种,可以是在头部加,可以在尾部加,还可在内容中间加,甚至加的盐还可以是随机的。这样即使用户使用的是最常用的密码,黑客拿到密文后破解的难度也很高。展开
作者回复: 👍
共 24 条评论198 - 王鸿运2018-12-18md5不应该称之为加密算法,所谓加密,肯定对应有解密,不管是简单的异或加密,还是对称加密算法(aes,des)或者是非对称加密(rsa,ecc),都有加密和解密方式 而md5是不可逆的,因此不能称为加密算法,从名字来看,md5就算一个摘要算法,用于生成字符串的摘要信息以及签名校验信息共 10 条评论148
- Jerry银银2018-11-07原来“散列冲突”的数学原理是鸽巢原理,为啥大部分算法书上讲解散列表的时候,不提一下呢。搞得我平时向朋友解释为什么存在冲突的时候,用得都是“鸽巢原理的白话版”,而且在讲解的时候还不知道那就是鸽巢原理,很尬! 离散数学的课必须得好好补完
作者回复: 👍
共 8 条评论118 - 小龙的城堡2018-11-07老师您好,我有一个疑问就是hash算法用于加密数据,但是我理解的加密是需要对应解密的,但是hash算法并不能解密,这用应用更像是数字签名,不知道我理解是不是有问题,感谢!
作者回复: 没错 可以理解为数字签名
共 3 条评论57 - 姜威2018-11-16带着问题来学习: 1.如何防止数据库中的用户信息被脱库? 2.你会如何存储用户密码这么重要的数据吗?仅仅 MD5 加密一下存储就够了吗? 3.在实际开发中,我们应该如何用哈希算法解决问题? 一、什么是哈希算法? 1.定义 将任意长度的二进制值串映射成固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。 2.如何设计一个优秀的哈希算法? ①单向哈希: 从哈希值不能反向推导出哈希值(所以哈希算法也叫单向哈希算法)。 ②篡改无效: 对输入敏感,哪怕原始数据只修改一个Bit,最后得到的哈希值也大不相同。 ③散列冲突: 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小。 ④执行效率: 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速计算哈希值。 二、哈希算法的常见应用有哪些? 7个常见应用:安全加密、唯一标识、数据校验、散列函数、负载均衡、数据分片、分布式存储。 1.安全加密 ①常用于加密的哈希算法: MD5:MD5 Message-Digest Algorithm,MD5消息摘要算法 SHA:Secure Hash Algorithm,安全散列算法 DES:Data Encryption Standard,数据加密标准 AES:Advanced Encryption Standard,高级加密标准 ②对用于加密的哈希算法,有两点格外重要,第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要小。 ③在实际开发中要权衡破解难度和计算时间来决定究竟使用哪种加密算法。 2.唯一标识 通过哈希算法计算出数据的唯一标识,从而用于高效检索数据。 3.数据校验 利用哈希算法对输入数据敏感的特点,可以对数据取哈希值,从而高效校验数据是否被篡改过。 4.散列函数 散列函数中用到的哈希算法更加关注散列后的值能不能平均分布,以及散列函数的执行快慢。 三、思考 1.如何防止数据库中的用户信息被脱库?你会如何存储用户密码这么重要的数据吗? ①使用MD5进行加密 ②字典攻击:如果用户信息被“脱库”,黑客虽然拿到的是加密之后的密文,但可以通过“猜”的方式来破解密码,这是因为,有些用户的密码太简单。 ③针对字典攻击,我们可以引入一个盐(salt),跟用户密码组合在一起,增加密码的复杂度。 2.现在,区块链是一个很火的领域,它被很多人神秘化,不过其底层的实现原理并不复杂。其中,哈希算法就是它的一个非常重要的理论基础。你能讲一讲区块链使用的是哪种哈希算法吗?是为了解决什么问题而使用的呢?展开共 7 条评论51
- 🐱您的好友William...2018-11-08其实我感觉hash不可能做到无冲突的原理可以用机器学习里面的免费午餐理论解释,因为hash追求的其实就是机器学习中的best seperate,就是mapping之后,不只是把两个不一样的东西分开,还要保证两者足够远(最大margin),因为hash函数是要面对所有类型的数据分布,而免费午餐理论告诉我们:不存在一种完美的算法对所有类型的数据分布都能做到完美的分离,最好的算法一定是根据特定的数据分布特定设计出来的。所以像hash函数这种需要应对不特定数据分布的,需要广泛使用的,是一定不会将数据完美seperate的。展开
作者回复: 👍
共 4 条评论35 - Qfxl2019-12-18大学专攻信息安全的闭门大弟子尝试解答一下留言区的问题,如有纰漏,请指正 1. 盐一般需要跟哈希值一起储存,无须额外加密 2. 盐要随机的,固定盐相当于没加。 3. 为何盐泄漏了也相对安全?假设盐是8bits, 相比没盐的彩虹表,新彩虹表大约是原来的2^8倍大小,加大了破解难度,回应原文,没有绝对的安全 4. 信息安全的一个重要假设是计算资源是有限的,很多安全措施都是增加破解成本。教授也强调量子计算可能会使现今所有加密手段失效。 5. 文中提到的哈希算法都属于密码学工具,广义上也算是加密算法,更准确是数字签名或信息摘要算法,以区分开可解密的对称非对称加密算法 6. 千万不要用MD5来存储密码!展开共 7 条评论30
- FLYING2018-11-07越是复杂哈希算法越难破解,但同样计算时间也就越少。这句话应该是越多吧?
作者回复: 谢谢指出 笔误 本来是想写“长”的 写成了“少”
22 - 道行三易2018-11-08所有的安全措施,只是增加攻击的成本而已!!!共 2 条评论14
- Xianping2018-11-26加盐之后,盐是随机的,但对一个用户来讲,盐是固定的,而且肯定是存储的,那同样找到盐之后可以轻易计算hash了共 3 条评论9
- 伯安2018-11-07哈希算法的特点有一条:从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法)。 可是JAVA中的MD5类不是有加密和解密方法吗?解密的过程,是不是代表哈希算法能够反向推导出原始数据呢?就这块比较困惑。。
作者回复: 应该没有吧。有破解方法 但也是基于碰撞的。但它也只是最近才被破解的
共 3 条评论8 - smarttime2018-12-13salt存到数据库中,如果脱库了,通过彩虹表还是可以破解的对吗?请老师讲一下密码加盐最佳实践,在网上找了很多文章要么人云亦云,要么自以为是的重复造轮子,希望老师可以拿着当前大厂的真实方案来解惑共 2 条评论6
- aoe2019-10-25今天终于知道为什么hash值会冲突了5
- 落叶飞逝的恋2018-12-20老师有个问题: 我们可以从图片的二进制码串开头取 100 个字节,从中间取 100 个字节,从最后再取 100 个字节,然后将这 300 个字节放到一块,通过哈希算法(比如 MD5),得到一个哈希字符串,用它作为图片的唯一标识。 这里说的取图片的二进制码串头部、中部、尾部的100个字节,这样图片在第一次计算的时候,还是需要完全读取图片的流。第一次就很耗时呀?展开共 2 条评论5
- 坤2019-07-05SHA128 也被攻破了,Google的成果。共 2 条评论4
- chengzise2019-05-251. hash不可能做到无冲突的原理,可以用数学中的函数映射来理解。hash函数本质就是明文空间到密文空间的映射,以md5为例,它的密文空间是2^128,明文空间是无穷大的,所以存在多个明文映射到同一个密文,不存在无冲突的hash。 2. 同时,为什么说可以设计出md5等碰撞概率小的hash函数:虽然刚才说的明文空间是无穷大的,但是实际人类使用的明文空间没有想象中的那么大,例如:大量的文章都是相对于有意义的,随机的乱码文章,人类根本不会使用到。因此还是可以设计出在人类使用的明文空间的hash函数的展开共 1 条评论4
- Tintin2018-11-11个人认为hash算法不能做加密用,因为解密不出来,文中说的不是准确
作者回复: 我再去研究下 有没有要求说加密算法必须能解密才叫加密算法。这里你看以理解为数字签名
共 3 条评论4 - 小喵喵2019-10-17王老师,请教下: 1. 安全加密是指先根据原文通过哈希函数求哈希值,然后再对哈希值进行MD5或SHA加密吗?如果不是,那请老师举例说明一下具体怎么加密的。 2.针对字典攻击采用加盐的方式来增加复杂度。是不是加盐的字母,比如我加盐前缀为XYZ,用户的密码为123456,我加盐后变成了XYZ123456,那这个XYZ是不是要告诉用户,不然用户不知道自己的密码呀,对不对呢?展开共 3 条评论3