极客时间已完结课程限时免费阅读

55 | 算法实战(四):剖析微服务接口鉴权限流背后的数据结构和算法

55 | 算法实战(四):剖析微服务接口鉴权限流背后的数据结构和算法-极客时间

55 | 算法实战(四):剖析微服务接口鉴权限流背后的数据结构和算法

讲述:冯永吉

时长14:41大小13.42M

微服务是最近几年才兴起的概念。简单点讲,就是把复杂的大应用,解耦拆分成几个小的应用。这样做的好处有很多。比如,这样有利于团队组织架构的拆分,毕竟团队越大协作的难度越大;再比如,每个应用都可以独立运维,独立扩容,独立上线,各个应用之间互不影响。不用像原来那样,一个小功能上线,整个大应用都要重新发布。
不过,有利就有弊。大应用拆分成微服务之后,服务之间的调用关系变得更复杂,平台的整体复杂熵升高,出错的概率、debug 问题的难度都高了好几个数量级。所以,为了解决这些问题,服务治理便成了微服务的一个技术重点。
所谓服务治理,简单点讲,就是管理微服务,保证平台整体正常、平稳地运行。服务治理涉及的内容比较多,比如鉴权、限流、降级、熔断、监控告警等等。这些服务治理功能的实现,底层依赖大量的数据结构和算法。今天,我就拿其中的鉴权和限流这两个功能,来带你看看,它们的实现过程中都要用到哪些数据结构和算法。

鉴权背景介绍

以防你之前可能对微服务没有太多了解,所以我对鉴权的背景做了简化。
假设我们有一个微服务叫用户服务(User Service)。它提供很多用户相关的接口,比如获取用户信息、注册、登录等,给公司内部的其他应用使用。但是,并不是公司内部所有应用,都可以访问这个用户服务,也并不是每个有访问权限的应用,都可以访问用户服务的所有接口。
我举了一个例子给你讲解一下,你可以看我画的这幅图。这里面,只有 A、B、C、D 四个应用可以访问用户服务,并且,每个应用只能访问用户服务的部分接口。
要实现接口鉴权功能,我们需要事先将应用对接口的访问权限规则设置好。当某个应用访问其中一个接口的时候,我们就可以拿应用的请求 URL,在规则中进行匹配。如果匹配成功,就说明允许访问;如果没有可以匹配的规则,那就说明这个应用没有这个接口的访问权限,我们就拒绝服务。

如何实现快速鉴权?

接口的格式有很多,有类似 Dubbo 这样的 RPC 接口,也有类似 Spring Cloud 这样的 HTTP 接口。不同接口的鉴权实现方式是类似的,我这里主要拿 HTTP 接口给你讲解。
鉴权的原理比较简单、好理解。那具体到实现层面,我们该用什么数据结构来存储规则呢?用户请求 URL 在规则中快速匹配,又该用什么样的算法呢?
实际上,不同的规则和匹配模式,对应的数据结构和匹配算法也是不一样的。所以,关于这个问题,我继续细化为三个更加详细的需求给你讲解。

1. 如何实现精确匹配规则?

我们先来看最简单的一种匹配模式。只有当请求 URL 跟规则中配置的某个接口精确匹配时,这个请求才会被接受、处理。为了方便你理解,我举了一个例子,你可以看一下。
不同的应用对应不同的规则集合。我们可以采用散列表来存储这种对应关系。我这里着重讲下,每个应用对应的规则集合,该如何存储和匹配。
针对这种匹配模式,我们可以将每个应用对应的权限规则,存储在一个字符串数组中。当用户请求到来时,我们拿用户的请求 URL,在这个字符串数组中逐一匹配,匹配的算法就是我们之前学过的字符串匹配算法(比如 KMP、BM、BF 等)。
规则不会经常变动,所以,为了加快匹配速度,我们可以按照字符串的大小给规则排序,把它组织成有序数组这种数据结构。当要查找某个 URL 能否匹配其中某条规则的时候,我们可以采用二分查找算法,在有序数组中进行匹配。
而二分查找算法的时间复杂度是 O(logn)(n 表示规则的个数),这比起时间复杂度是 O(n) 的顺序遍历快了很多。对于规则中接口长度比较长,并且鉴权功能调用量非常大的情况,这种优化方法带来的性能提升还是非常可观的 。

2. 如何实现前缀匹配规则?

我们再来看一种稍微复杂的匹配模式。只要某条规则可以匹配请求 URL 的前缀,我们就说这条规则能够跟这个请求 URL 匹配。同样,为了方便你理解这种匹配模式,我还是举一个例子说明一下。
不同的应用对应不同的规则集合。我们采用散列表来存储这种对应关系。我着重讲一下,每个应用的规则集合,最适合用什么样的数据结构来存储。
Trie 树那节,我们讲到,Trie 树非常适合用来做前缀匹配。所以,针对这个需求,我们可以将每个用户的规则集合,组织成 Trie 树这种数据结构。
不过,Trie 树中的每个节点不是存储单个字符,而是存储接口被“/”分割之后的子目录(比如“/user/name”被分割为“user”“name”两个子目录)。因为规则并不会经常变动,所以,在 Trie 树中,我们可以把每个节点的子节点们,组织成有序数组这种数据结构。在匹配的过程中,我们可以利用二分查找算法,决定从一个节点应该跳到哪一个子节点。

3. 如何实现模糊匹配规则?

如果我们的规则更加复杂,规则中包含通配符,比如“**”表示匹配任意多个子目录,“*”表示匹配任意一个子目录。只要用户请求 URL 可以跟某条规则模糊匹配,我们就说这条规则适用于这个请求。为了方便你理解,我举一个例子来解释一下。
不同的应用对应不同的规则集合。我们还是采用散列表来存储这种对应关系。这点我们刚才讲过了,这里不再重复说了。我们着重看下,每个用户对应的规则集合,该用什么数据结构来存储?针对这种包含通配符的模糊匹配,我们又该使用什么算法来实现呢?
还记得我们在回溯算法那节讲的正则表达式的例子吗?我们可以借助正则表达式那个例子的解决思路,来解决这个问题。我们采用回溯算法,拿请求 URL 跟每条规则逐一进行模糊匹配。如何用回溯算法进行模糊匹配,这部分我就不重复讲了。你如果忘记了,可以回到相应章节复习一下。
不过,这个解决思路的时间复杂度是非常高的。我们需要拿每一个规则,跟请求 URL 匹配一遍。那有没有办法可以继续优化一下呢?
实际上,我们可以结合实际情况,挖掘出这样一个隐形的条件,那就是,并不是每条规则都包含通配符,包含通配符的只是少数。于是,我们可以把不包含通配符的规则和包含通配符的规则分开处理。
我们把不包含通配符的规则,组织成有序数组或者 Trie 树(具体组织成什么结构,视具体的需求而定,是精确匹配,就组织成有序数组,是前缀匹配,就组织成 Trie 树),而这一部分匹配就会非常高效。剩下的是少数包含通配符的规则,我们只要把它们简单存储在一个数组中就可以了。尽管匹配起来会比较慢,但是毕竟这种规则比较少,所以这种方法也是可以接受的。
当接收到一个请求 URL 之后,我们可以先在不包含通配符的有序数组或者 Trie 树中查找。如果能够匹配,就不需要继续在通配符规则中匹配了;如果不能匹配,就继续在通配符规则中查找匹配。

限流背景介绍

讲完了鉴权的实现思路,我们再来看一下限流。
所谓限流,顾名思义,就是对接口调用的频率进行限制。比如每秒钟不能超过 100 次调用,超过之后,我们就拒绝服务。限流的原理听起来非常简单,但它在很多场景中,发挥着重要的作用。比如在秒杀、大促、双 11、618 等场景中,限流已经成为了保证系统平稳运行的一种标配的技术解决方案。
按照不同的限流粒度,限流可以分为很多种类型。比如给每个接口限制不同的访问频率,或者给所有接口限制总的访问频率,又或者更细粒度地限制某个应用对某个接口的访问频率等等。
不同粒度的限流功能的实现思路都差不多,所以,我今天主要针对限制所有接口总的访问频率这样一个限流需求来讲解。其他粒度限流需求的实现思路,你可以自己思考。

如何实现精准限流?

最简单的限流算法叫固定时间窗口限流算法。这种算法是如何工作的呢?首先我们需要选定一个时间起点,之后每当有接口请求到来,我们就将计数器加一。如果在当前时间窗口内,根据限流规则(比如每秒钟最大允许 100 次访问请求),出现累加访问次数超过限流值的情况时,我们就拒绝后续的访问请求。当进入下一个时间窗口之后,计数器就清零重新计数。
这种基于固定时间窗口的限流算法的缺点是,限流策略过于粗略,无法应对两个时间窗口临界时间内的突发流量。这是怎么回事呢?我举一个例子给你解释一下。
假设我们的限流规则是,每秒钟不能超过 100 次接口请求。第一个 1s 时间窗口内,100 次接口请求都集中在最后 10ms 内。在第二个 1s 的时间窗口内,100 次接口请求都集中在最开始的 10ms 内。虽然两个时间窗口内流量都符合限流要求(≤100 个请求),但在两个时间窗口临界的 20ms 内,会集中有 200 次接口请求。固定时间窗口限流算法并不能对这种情况做限制,所以,集中在这 20ms 内的 200 次请求就有可能压垮系统。
为了解决这个问题,我们可以对固定时间窗口限流算法稍加改造。我们可以限制任意时间窗口(比如 1s)内,接口请求数都不能超过某个阈值( 比如 100 次)。因此,相对于固定时间窗口限流算法,这个算法叫滑动时间窗口限流算法
流量经过滑动时间窗口限流算法整形之后,可以保证任意一个 1s 的时间窗口内,都不会超过最大允许的限流值,从流量曲线上来看会更加平滑。那具体到实现层面,我们该如何来做呢?
我们假设限流的规则是,在任意 1s 内,接口的请求次数都不能大于 K 次。我们就维护一个大小为 K+1 的循环队列,用来记录 1s 内到来的请求。注意,这里循环队列的大小等于限流次数加一,因为循环队列存储数据时会浪费一个存储单元。
当有新的请求到来时,我们将与这个新请求的时间间隔超过 1s 的请求,从队列中删除。然后,我们再来看循环队列中是否有空闲位置。如果有,则把新请求存储在队列尾部(tail 指针所指的位置);如果没有,则说明这 1 秒内的请求次数已经超过了限流值 K,所以这个请求被拒绝服务。
为了方便你理解,我举一个例子,给你解释一下。在这个例子中,我们假设限流的规则是,任意 1s 内,接口的请求次数都不能大于 6 次。
即便滑动时间窗口限流算法可以保证任意时间窗口内,接口请求次数都不会超过最大限流值,但是仍然不能防止,在细时间粒度上访问过于集中的问题。
比如我刚刚举的那个例子,第一个 1s 的时间窗口内,100 次请求都集中在最后 10ms 中,也就是说,基于时间窗口的限流算法,不管是固定时间窗口还是滑动时间窗口,只能在选定的时间粒度上限流,对选定时间粒度内的更加细粒度的访问频率不做限制。
实际上,针对这个问题,还有很多更加平滑的限流算法,比如令牌桶算法、漏桶算法等。如果感兴趣,你可以自己去研究一下。

总结引申

今天,我们讲解了跟微服务相关的接口鉴权和限流功能的实现思路。现在,我稍微总结一下。
关于鉴权,我们讲了三种不同的规则匹配模式。不管是哪种匹配模式,我们都可以用散列表来存储不同应用对应的不同规则集合。对于每个应用的规则集合的存储,三种匹配模式使用不同的数据结构。
对于第一种精确匹配模式,我们利用有序数组来存储每个应用的规则集合,并且通过二分查找和字符串匹配算法,来匹配请求 URL 与规则。对于第二种前缀匹配模式,我们利用 Trie 树来存储每个应用的规则集合。对于第三种模糊匹配模式,我们采用普通的数组来存储包含通配符的规则,通过回溯算法,来进行请求 URL 与规则的匹配。
关于限流,我们讲了两种限流算法,第一种是固定时间窗口限流算法,第二种是滑动时间窗口限流算法。对于滑动时间窗口限流算法,我们用了之前学习过的循环队列来实现。比起固定时间窗口限流算法,它对流量的整形效果更好,流量更加平滑。
从今天的学习中,我们也可以看出,对于基础架构工程师来说,如果不精通数据结构和算法,我们就很难开发出性能卓越的基础架构、中间件。这其实就体现了数据结构和算法的重要性。

课后思考

除了用循环队列来实现滑动时间窗口限流算法之外,我们是否还可以用其他数据结构来实现呢?请对比一下这些数据结构跟循环队列在解决这个问题时的优劣之处。
分析一下鉴权那部分内容中,前缀匹配算法的时间复杂度和空间复杂度。
最后,有个消息提前通知你一下。本节是专栏的倒数第二节课了,不知道学到现在,你掌握得怎么样呢?为了帮你复习巩固,做到真正掌握这些知识,我针对专栏涉及的数据结构和算法,精心编制了一套练习题。从正月初一到初七,每天发布一篇。你要做好准备哦!
分享给需要的人,Ta购买本课程,你将得20
生成海报并分享

赞 44

提建议

上一篇
54 | 算法实战(三):剖析高性能队列Disruptor背后的数据结构和算法
下一篇
56 | 算法实战(五):如何用学过的数据结构和算法实现一个短网址系统?
unpreview
 写留言

精选留言(46)

  • suke
    置顶
    2019-02-01
    老师能对限流相关的算法和数据结构多讲一讲么

    作者回复: 这是我之前开源的限流框架,你可以看看,比较详细了。而且里面还有一篇我发到infoq上的文章,讲设计思路。 https://github.com/wangzheng0822/ratelimiter4j

    共 13 条评论
    51
  • Flash
    2019-04-01
    思考题1:可以用优先级队列(根据请求时间构建小顶堆),最早的请求时间的放在堆顶。然后每次进来一个请求,就判断这个时间跟堆顶的时间差是否小于1S,并且堆的大小小于请求限制的次数,如果是就插入队列,如果不是,就限制。
    共 5 条评论
    43
  • Billylin
    2019-02-01
    春节还想着加福利,这是一种什么精神。
    共 1 条评论
    39
  • xuery
    2019-04-11
    1. 还可以采用双向链表,每次请求往链表尾插入一个时间,插入之前先从链表头删除一秒之前的节点,之后看下链表的size是否大于等于N,大于等于N则拒绝本次访问,否则允许本次访问并插入链表尾;占用的空间比循环链表要大 2. 假设有n个规则,每个规则的单词个数平均为m,则时间复杂度为O(m*logn), 空间复杂度O(n*m) 时间复杂度分析下:平均搜索m层,每一层最多有n个单词,由于是采用有序数组存储,查找时间复杂度为O(logn),所以总的时间复杂度为O(m*logn)
    展开
    共 1 条评论
    26
  • Williamzhang
    2019-02-19
    感觉限流的思想中可以参考一下tcp的拥塞控制算法
    共 1 条评论
    25
  • DigDeeply
    2019-03-16
    思考题1 还可以使用一个固定大小的小顶堆,以时间戳作为排序依据。 每次有请求时相当于要在小顶堆内插入数据,如果堆顶数据的时间跟本次时间差距小于1s,且堆已满的情况下,不允许继续插入。每次插入数据的时候,删除1s外的数据,重新排序,确定新的堆顶。 不过感觉跟循环队列比,都是劣势;插入数据,删除数据,时间复杂度都要更高。而且每次删除数据后还要重新排序一遍确定新的堆顶。
    展开
    12
  • Monday
    2019-02-15
    鉴权的精确匹配用散列表的时间复杂度是O(1),比顺序匹配O(n)和二分查找的效率都高啊。为什么不选用呢?

    作者回复: 小数据量的情况下,散列表在存储和匹配上并不一定比二分查找高呢

    12
  • 青铜5 周群力
    2019-02-07
    请教老师一个问题哈,为啥鉴权算法里,每个应用的规则要放到有序数组呢,放hash set会更好吧? 比如一个应用有两个规则:/user/a和/user/b,把这俩规则放hash set岂不是时间复杂度更低、更好呢

    作者回复: hash set对于小数据量也不一定比有序数组效率高呢。毕竟hash set还要计算哈希值、处理冲突等。

    10
  • Ray
    2019-02-01
    读您的文章就是一种享受!!!
    10
  • 懒猫
    2019-05-13
    请教老师,鉴权那一部分如何用有序数组做二分查找呢,数组里存放的都是uri中的单词吗?在数组中怎么排序?字典序?这里的二分比较时怎么比较大小呢

    作者回复: 1. 存放的是uri字符串 2. 用字典序来排序 3. 比较两个字符串大小的算法你应该知道吧

    6
  • 金龟
    2019-02-01
    老师,文章里你说了这一句话'只能在选定的时间粒度上限流,对选定时间粒度内的更加细粒度的访问频率不做限制。'这里更加细粒度代表什么意思,我觉得已经解决了,最初时间窗口的问题呀。比如如果我限流5qps,那循环队列(元素内存时间)只留tail指针,只是要增加每次tail前进之前用当前时间和后一个元素时间进行一个差指,大于1秒前进,小于一秒拒绝请求。

    作者回复: 更细时间粒度的理解是这样的:比如你限制的是100次/s,那具体到10ms(更细时间粒度)是多少,你就无法限制了。

    6
  • wjh_all_in
    2019-05-18
    请问一下,滑动窗口限流策略,清除过期数据的时机是新请求到达,这个是基于单位ms内不会有很大的并发的考虑吗?如果像淘宝这样的大流量电商,是不是需要更低精度的时间,不然清除数据的耗时,可能会使接口性能变差

    作者回复: 课程github上有详细的介绍文档,如果感兴趣可以去看下

    3
  • 何欢
    2019-02-01
    给老师点个赞,敬业精神值得学习,春节期间也是给自己充电的好时期,加油。
    3
  • 注定非凡
    2020-02-10
    所谓服务治理涉及的内容比较多,比如鉴权、限流、降级、熔断、监控告警等等。这些服务治理功能的实现,底层依赖大量的数据结构和算法鉴权背景介绍 要实现接口鉴权功能,需要事先将应用对接口的访问权限规则设置好。当某个应用访问其中一个接口的时候,就可以拿应用的请求 URL,在规则中进行匹配。根据匹配成功与否,判断是否响应访问。 如何实现快速鉴权?该用什么数据结构来存储规则?用户请求 URL 在规则中快速匹配,又该用什么样的算法呢? 1. 如何实现精确匹配规则? 只有当请求 URL 跟规则中配置的某个接口精确匹配时,这个请求才会被接受、处理 * 不同的应用对应不同的规则集合。可以采用散列表来存储这种对应关系 * 可以将每个应用对应的权限规则,存储在一个字符串数组中。拿用户的请求 URL,在这个数组中逐一匹配 * 规则不会经常变动,所以按照字符串的大小给规则排序加快匹配速度,把它组织成有序数组这种数据结构。当要查找某个 URL 能否匹配时,采用二分查找算法,在有序数组中进行匹配。 2. 如何实现前缀匹配规则? 只要某条规则可以匹配请求 URL 的前缀,就认为这条规则能够跟这个请求 URL 匹配 * 不同的应用对应不同的规则集合。采用散列表来存储这种对应关系 * Trie 树非常适合用来做前缀匹配。所以将每个用户的规则集合组织成 Trie 树 * Trie 树中的每个节点存储接口被“/”分割之后的子目录 * 因为规则并不会经常变动,所以把每个节点的子节点们,组织成有序数组,利用二分查找算法匹配,决定从一个节点应该跳到哪一个子节点 3. 如何实现模糊匹配规则? 如果规则中包含通配符,只要用户请求 URL 可以跟某条规则模糊匹配,就判定这条规则适用于这个请求 不同的应用对应不同的规则集合。还是采用散列表来存储这种对应关系 * 采用回溯算法,拿请求 URL 跟每条规则逐一进行模糊匹配,但在回溯算法复杂度较高 * 实际上并不是每条规则都包含通配符,包含通配符的只是少数,可以把不包含通配符的规则和包含通配符的规则分开处理 * 把不包含通配符的规则,组织成有序数组或者 Trie 树,这一部分匹配就会非常高效 * 少数包含通配符的规则,只要把它们简单存储在一个数组中。但是这种规则比较少,所以匹配起来会比较慢也是可以接受的 * 当接收到一个请求,可以先在不包含通配符的有序数组或者 Trie 树中查找。 限流背景介绍 * 所谓限流,就是对接口调用的频率进行限制,限流已成为保证系统平稳运行的一种标配的技术解决方案 * 按照不同的限流粒度,限流可以分为很多种类型。如给每个接口限制不同的访问频率,或者给所有接口限制总的访问频率,又或者更细粒度地限制某个应用对某个接口的访问频率等等。 如何实现精准限流? 最简单的限流算法:固定时间窗口限流算法 * 首先选定一个时间起点,之后每当有接口请求到来,就将计数器加一 * 如果在当前时间窗口内,根据限流规则(比如每秒钟最大允许 100 次访问请求),出现累加访问次数超过限流值的情况时,就拒绝后续的访问请求。 * 当进入下一个时间窗口之后,计数器就清零重新计数。 * 缺点:限流策略过于粗略,无法应对两个时间窗口临界时间内的突发流量 滑动时间窗口限流算法可以限制任意时间窗口(比如 1s)内,接口请求数都不能超过某个阈值( 比如 100 次) 假设限流的规则是在任意 1s 内,接口的请求次数都不能大于 K 次 * 维护一个大小为 K+1 的循环队列记录 1s 内到来的请求。因为循环队列存储数据时会浪费一个存储单元,循环队列的大小等于限流次数加一 * 当有新的请求到来时,将与这个新请求的时间间隔超过 1s 的请求,从队列中删除。 * 然后检查循环队列中是否有空闲位置。如果有,则把新请求存储在队列尾部(tail 指针所指的位置);如果没有就拒绝服务 * 即便滑动时间窗口限流算法可以保证任意时间窗口内,接口请求次数都不会超过最大限流值,但是仍然不能防止,在细时间粒度上访问过于集中的问题 * 基于时间窗口的限流算法,不管是固定时间窗口还是滑动时间窗口,只能在选定的时间粒度上限流,对选定时间粒度内的更加细粒度的访问频率不做限制。
    展开
    2
  • 水果刀
    2019-02-01
    立个flag,正月初一到正月初七每天都做老师的题……
    2
  • 言希
    2019-02-01
    老师用心了
    2
  • 向羽
    2019-02-01
    太棒了,给老师点赞👍
    2
  • 失火的夏天
    2019-02-01
    思考题1用链表应该也可以吧(是否循环感觉都无所谓,只要有头尾指针就行了),不过感觉是换汤不换药,核心思想和队列基本一模一样。
    2
  • 南山
    2019-02-01
    给老师点赞
    2
  • lianlian
    2019-02-01
    哇,老师优秀又热心(✪▽✪),期待老师的题目(๑˙ー˙๑)
    2