38 | 如何发掘数据之间的关系?
下载APP
关闭
渠道合作
推荐作者
38 | 如何发掘数据之间的关系?
2019-01-24 李智慧 来自北京
《从0开始学大数据》
课程介绍
讲述:李智慧
时长12:07大小11.08M
通过上一个模块“大数据分析与运营”的学习,我们知道数据之中蕴藏着关系,如果数据量足够大,这种关系越逼近真实世界的客观规律。在我们的工作和生活中你会发现,网页之间的链接关系蕴藏着网页的重要性排序关系,购物车的商品清单蕴藏着商品的关联关系,通过对这些关系的挖掘,可以帮助我们更清晰地了解客观世界的规律,并利用规律提高生产效率,进一步改造我们的世界。
挖掘数据的典型应用场景有搜索排序、关联分析以及聚类,下面我们一个一个来看,希望通过今天的学习,你能够了解数据挖掘典型场景及其应用的算法。
搜索排序
我们说过 Hadoop 大数据技术最早源于 Google,而 Google 使用大数据技术最重要的应用场景就是网页排名。
当我们使用 Google 进行搜索的时候,你会发现,通常在搜索的前三个结果里就能找到自己想要的网页内容,而且很大概率第一个结果就是我们想要的网页。而排名越往后,搜索结果与我期望的偏差越大。并且在搜索结果页的上面,会提示总共找到多少个结果。
那么 Google 为什么能在十几万的网页中知道我最想看的网页是哪些,然后把这些页面排到最前面呢?
答案是 Google 使用了一种叫 PageRank 的算法,这种算法根据网页的链接关系给网页打分。如果一个网页 A,包含另一个网页 B 的超链接,那么就认为 A 网页给 B 网页投了一票,以下面四个网页 A、B、C、D 举例,带箭头的线条表示链接。
B 网页包含了 A、D 两个页面的超链接,相当于 B 网页给 A、D 每个页面投了一票,初始的时候,所有页面都是 1 分,那么经过这次投票后,B 给了 A 和 D 每个页面 1/2 分(B 包含了 A、D 两个超链接,所以每个投票值 1/2 分),自己从 C 页面得到 1/3 分(C 包含了 A、B、D 三个页面的超链接,每个投票值 1/3 分)。
而 A 页面则从 B、C、D 分别得到 1/2、1/3、1 分。用公式表示就是
等号左边是经过一次投票后,A 页面的 PageRank 分值;等号右边每一项的分子是包含 A 页面超链接的页面的 PageRank 分值,分母是该页面包含的超链接数目。
这样经过一次计算后,每个页面的 PageRank 分值就会重新分配,重复同样的算法过程,经过几次计算后,根据每个页面 PageRank 分值进行排序,就得到一个页面重要程度的排名表。根据这个排名表,将用户搜索出来的网页结果排序,排在前面的通常也正是用户想要的结果。
但是这个算法还有个问题,如果某个页面只包含指向自己的超链接,这样的话其他页面不断给它送分,而自己一分不出,随着计算执行次数越多,它的分值也就越高,这显然是不合理的。这种情况就像下图所示的,A 页面只包含指向自己的超链接。
Google 的解决方案是,设想浏览一个页面的时候,有一定概率不是点击超链接,而是在地址栏输入一个 URL 访问其他页面,表示在公式上,就是
上面 就是跳转到其他任何页面的概率,通常取经验值 0.15(即 为 0.85),因为有一定概率输入的 URL 是自己的,所以加上上面公式最后一项,其中分母 4 表示所有网页的总数。
那么对于 个网页,任何一个页面 的 PageRank 计算公式如下
公式中, 表示所有包含有 超链接的 , 表示 页面包含的超链接数, 表示所有的网页总和。
由于 Google 要对全世界的网页进行排名,所以这里的 N 可能是一个万亿级的数字,一开始将所有页面的 PageRank 值设为 1,带入上面公式计算,每个页面都得到一个新的 PageRank 值。再把这些新的 PageRank 值带入上面的公式,继续得到更新的 PageRank 值,如此迭代计算,直到所有页面的 PageRank 值几乎不再有大的变化才停止。
在这样大规模的数据上进行很多次迭代计算,是传统计算方法根本解决不了的问题,这就是 Google 要研发大数据技术的原因,并因此诞生了一个大数据行业。而 PageRank 算法也让 Google 从众多搜索引擎公司脱颖而出,铸就了 Google 接近万亿级美元的市值,开创了人类科技的新纪元。
关联分析
关联分析是大数据计算的重要场景之一,我在专栏开篇的时候就讨论过一个经典案例,通过数据挖掘,商家发现尿不湿和啤酒经常会同时被购买,所以商家就把啤酒和尿不湿摆放在一起促进销售。这个案例曾经被质疑是假的,因为没有人见过超市把啤酒和尿布放在一起卖。
我在写专栏文章的时候,访问了京东的沃尔玛官方旗舰店,哈尔滨啤酒下方的六个店长推荐,两个是儿童纸尿裤,还有两个儿童奶粉。
在传统商超确实没有见过把啤酒和纸尿裤放在一起的情况,可能是因为传统商超的物理货架分区策略限制它没有办法这么做,而啤酒和尿不湿存在关联关系则确实是大数据中存在的规律,在电子商务网站就可以轻易进行关联推荐。
通过商品订单,可以发现频繁出现在同一个购物篮里商品间的关联关系,这种大数据关联分析也被称作是“购物篮分析”,频繁出现的商品组合也被称作是“频繁模式”。
在深入关联分析前,你需要先了解两个基本概念,一个是支持度,一个是置信度。
支持度是指一组频繁模式的出现概率,比如(啤酒,尿不湿)是一组频繁模式,它的支持度是 4%,也就是说,在所有订单中,同时出现啤酒和尿不湿这两件商品的概率是 4%。
置信度用于衡量频繁模式内部的关联关系,如果出现尿不湿的订单全部都包含啤酒,那么就可以说购买尿不湿后购买啤酒的置信度是 100%;如果出现啤酒的订单中有 20% 包含尿不湿,那么就可以说购买啤酒后购买尿不湿的置信度是 20%。
大型超市的商品种类数量数以万计,所有商品的组合更是一个天文数字;而电子商务网站的商品种类更多,历史订单数据同样也非常庞大,虽然我们有大数据技术,但是资源依然是有限的。
那我们应该从哪里考虑着手,可以使用最少的计算资源寻找到最小支持度的频繁模式?寻找满足最小支持度的频繁模式经典算法是 Apriori 算法,Apriori 算法的步骤是:
第 1 步:设置最小支持度阈值。
第 2 步:寻找满足最小支持度的单件商品,也就是单件商品出现在所有订单中的概率不低于最小支持度。
第 3 步:从第 2 步找到的所有满足最小支持度的单件商品中,进行两两组合,寻找满足最小支持度的两件商品组合,也就是两件商品出现在同一个订单中概率不低于最小支持度。
第 4 步:从第 3 步找到的所有满足最小支持度的两件商品,以及第 2 步找到的满足最小支持度的单件商品进行组合,寻找满足最小支持度的三件商品组合。
第 5 步:以此类推,找到所有满足最小支持度的商品组合。
Apriori 算法极大地降低了需要计算的商品组合数目,这个算法的原理是,如果一个商品组合不满足最小支持度,那么所有包含这个商品组合的其他商品组合也不满足最小支持度。所以从最小商品组合,也就是一件商品开始计算最小支持度,逐渐迭代,进而筛选出所有满足最小支持度的频繁模式。
通过关联分析,可以发现看似不相关商品的关联关系,并利用这些关系进行商品营销,比如我上面提到的啤酒和尿不湿的例子,一方面可以为用户提供购买便利;另一方面也能提高企业营收。专栏下一期还会讲到更多发现用户兴趣进行推荐的算法。
聚类
上一期我们讨论了“分类”,分类算法主要解决如何将一个数据分到几个确定类别中的一类里去。分类算法通常需要样本数据训练模型,再利用模型进行数据分类,那么一堆样本数据又如何知道各自的类别呢?样本数据归类一方面可以通过人工手动打标签,另一方面也可以利用算法进行自动归类,即所谓的“聚类”。
聚类就是对一批数据进行自动归类,如下图这样的一组数据,人眼一眼就可以识别出可以分为四组。
但是如果这些数据不是画在平面上,而是以二维坐标的方式给你一堆数据,你还能看出来吗?
K-means 是一种在给定分组个数后,能够对数据进行自动归类,即聚类的算法。计算过程请看图中这个例子。
第 1 步:随机在图中取 K 个种子点,图中 K=2,即图中的实心小圆点。
第 2 步:求图中所有点到这 K 个种子点的距离,假如一个点离种子点 X 最近,那么这个点属于 X 点群。在图中,可以看到 A、B 属于上方的种子点,C、D、E 属于中部的种子点。
第 3 步:对已经分好组的两组数据,分别求其中心点。对于图中二维平面上的数据,求中心点最简单暴力的算法就是对当前同一个分组中所有点的 X 坐标和 Y 坐标分别求平均值,得到的 <x,y> 就是中心点。
第 4 步:重复第 2 步和第 3 步,直到每个分组的中心点不再移动。这时候,距每个中心点最近的点数据聚类为同一组数据。
K-means 算法原理简单,在知道分组个数的情况下,效果非常好,是聚类经典算法。通过聚类分析我们可以发现事物的内在规律:具有相似购买习惯的用户群体被聚类为一组,一方面可以直接针对不同分组用户进行差别营销,线下渠道的话还可以根据分组情况进行市场划分;另一方面可以进一步分析,比如同组用户的其他统计特征还有哪些,并发现一些有价值的模式。
小结
今天我们聊了数据挖掘的几个典型算法,PageRank 算法通过挖掘链接关系,发现互联网网页的排名权重;Apriori 算法通过购物篮分析,发现商品的频繁模式;K-means 算法则可以进行自动数据聚类。这些算法不需要人工事先对数据进行标注,一般被称作无监督算法。上期的分类算法需要样本数据,而这些样本数据是需要人工进行预先标注的,因此分类算法一般都是有监督算法。
数据挖掘其实在大数据出现之前,甚至在计算机出现之间就已经存在了,因为挖掘数据中的规律可以帮助我们更好地认识这个世界,最终实现更好地改造这个世界。大数据技术使数据挖掘更加方便、成本更低,而几乎各种大数据产品都有对应的算法库可以方便地进行大数据挖掘。所以请保持好奇心,通过数据挖掘发现规律,进而可以创造更多的价值。
思考题
网页的链接关系如何用数据表示呢?PageRank 算法用 MapReduce 或者 Spark 编程如何实现呢?
欢迎你点击“请朋友读”,把今天的文章分享给好友。也欢迎你写下自己的思考或疑问,与我和其他同学一起讨论。
分享给需要的人,Ta购买本课程,你将得20元
生成海报并分享
赞 3
提建议
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
上一篇
37 | 如何对数据进行分类和预测?
下一篇
39 | 如何预测用户的喜好?
精选留言(13)
- 小气筒2019-01-24老师您好,我今年六月份刚本科毕业,入职一家大型国企的科技公司,最近新上了一个项目是关于物联网的,大概就是采集全国上千万只表的数据供业务场景使用,这些表大部分是五分钟采集一次数据,小部分是准实时采集,并对这些表进行开关阀操作,有准实时的和非准实时的,我是计算机专业毕业的,但是只是实习的时候在一家小型公司用ssm做过业务代码,目前也只会java的一些基本框架,基本的数据结构和算法,比如链表,数组,红黑树,二叉树,跳表等这些基础的数据结构,算法能力一般,没有刷过leecode题目,但能手写出基本的数据结构算法,数学基础基本停留在高中,最近也开始看概率论与数理统计,线性代数,机器学习实战也只看了一半,了解knn,朴素贝叶斯,逻辑回归这些算法的基本使用,但只会调参,不会建模,python基本语法还算了解,numpy这些库看着教程也能进行使用,hadoop家族里大部分的组件我都知道是做什么的,而且依赖于谁,只上手自己搭建过hdfs,yarn,hive,kafka,hbase这些基础的组件,但是都接触很浅,这些都是我在课下自己学习的,没有实践过。但是物联网采集平台经理说让我负责数据采集和数据清洗还有数据存储方面,因为会投标,可能会使用阿里腾讯他们这些成熟的云平台和组件,目前接手的就我自己,请问我能接下来这个任务嘛?今年六月份就要连接200w只表初步上线了,我现在对自己很没有把握。项目组人很少,这么大的项目,组里面就十个人,只有我一个刚毕业的开发,剩下都是搞业务的。我应该怎么办啊,从我来到现在都没有一个懂技术的人带领着,我心里很慌。我接下来应该怎么做啊?展开
作者回复: 机会难得,好好把握,努力学习,虚心请教 年轻人,不要怂,just do IT
共 9 条评论26 - Geek_534f732019-01-25啤酒尿布的那个例子有一些问题。“在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。” 逻辑是超市中买尿布人的很可能是年轻父亲,而他们也很可能买啤酒。反过来有些问题,因为买啤酒的人太多了。另外,在电子商务环境中,年轻妈妈更多的是自己上网购买尿布,因此,在购物网站上这种推荐用处可能非常非常小。展开共 1 条评论9
- 小老鼠2019-02-02算法python 有专门lib库吗?共 1 条评论2
- Mr.z2019-01-24我在京东沃尔玛店铺搜索,有啤酒,奶粉,牛奶,笔记本,电脑包,杜蕾斯,但是每次下部的店长推荐很固定的就是 奶粉,尿不湿,食用油,这个是根据用户画像推荐,还是根据每次搜索的商品类别进行关联推荐,亦或者这个就是固定广告位呢?2
- 杰之72019-01-24通过这一节的阅读学习,了解了数据挖掘的一些关系算法。Pagerank,Apriori,K-means,这些算法在计算前不需要进行标注数据,也叫无监督算法。 在Pagerank算法中,通过链接的关系,计算每一个网站的排名权重,得到我们最想要的网站在最前。 Apriopi算法,我的理解也是在选择一个最小商品组合之后,不断迭代,筛选出所有满足最小支持度的频繁模式。 K—means算法,通过计算数据的平均值找出中心点,进一步计算中心点,直到每一个分组的中心点不在移动。 老师,我的一个疑问是,为什么关联推荐中是找到最小支持度的频繁模式呢?不应该是最大吗。展开
作者回复: 就是至少有这么多出现,才叫有关联。
1 - 钱2020-02-11阅过留痕 本节介绍的是挖掘数据关联关系的算法,分类算法把事物归类化,归完类之后,需要按照某个维度进行排序,因为排完序的便于查找和统计,不同类型的事物之间的关系可以用于预测,人工智能和人的思考过程是一样的,人也是一样的需要拿到一些数据,然后分个类然后排个名然后看看他们之间有啥关系,这需要数据越全面越好也需要分析的方法,这就是大数据+大数据的算法吧!展开
- vigo2019-04-01拨开云雾见青天
- Sam.张朝2019-01-31算法知识结合具体的例子讲一下,会更好。
- 明亮2019-01-29有一个疑问,聚类算法K-means要求提前知晓分组个数K, 用户怎么知道应该分成几个组呢。
作者回复: 根据经验或者其他的算法专门计算K
- eldon2019-01-25老师我是一个学生 现在刚学完hdfs mapreduce yarn hive下一步学习路线应该怎么安排
- 张贝贝2019-01-24但是迭代几次之后就全部为0了
作者回复: 不论迭代多少次,4个页面的分值之和都是4
- 张贝贝2019-01-24pagerank那个例子有问题,没有任何web指向c。如果用原始的pagerank公式,c的分数是0,导致b的分数也是0,然后d的分数也会是0,最后所有的分数都是0
作者回复: 原文: 初始的时候,所有页面都是 1 分
- 梁中华2019-01-24期待后文展开讲更多的例子