极客时间已完结课程限时免费阅读

34 | 到底可不可以使用join?

34 | 到底可不可以使用join?-极客时间

34 | 到底可不可以使用join?

讲述:林晓斌

时长16:42大小15.25M

在实际生产中,关于 join 语句使用的问题,一般会集中在以下两类:
我们 DBA 不让使用 join,使用 join 有什么问题呢?
如果有两个大小不同的表做 join,应该用哪个表做驱动表呢?
今天这篇文章,我就先跟你说说 join 语句到底是怎么执行的,然后再来回答这两个问题。
为了便于量化分析,我还是创建两个表 t1 和 t2 来和你说明。
CREATE TABLE `t2` (
`id` int(11) NOT NULL,
`a` int(11) DEFAULT NULL,
`b` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `a` (`a`)
) ENGINE=InnoDB;
drop procedure idata;
delimiter ;;
create procedure idata()
begin
declare i int;
set i=1;
while(i<=1000)do
insert into t2 values(i, i, i);
set i=i+1;
end while;
end;;
delimiter ;
call idata();
create table t1 like t2;
insert into t1 (select * from t2 where id<=100)
可以看到,这两个表都有一个主键索引 id 和一个索引 a,字段 b 上无索引。存储过程 idata() 往表 t2 里插入了 1000 行数据,在表 t1 里插入的是 100 行数据。

Index Nested-Loop Join

我们来看一下这个语句:
select * from t1 straight_join t2 on (t1.a=t2.a);
如果直接使用 join 语句,MySQL 优化器可能会选择表 t1 或 t2 作为驱动表,这样会影响我们分析 SQL 语句的执行过程。所以,为了便于分析执行过程中的性能问题,我改用 straight_join 让 MySQL 使用固定的连接方式执行查询,这样优化器只会按照我们指定的方式去 join。在这个语句里,t1 是驱动表,t2 是被驱动表。
现在,我们来看一下这条语句的 explain 结果。
图 1 使用索引字段 join 的 explain 结果
可以看到,在这条语句里,被驱动表 t2 的字段 a 上有索引,join 过程用上了这个索引,因此这个语句的执行流程是这样的:
从表 t1 中读入一行数据 R;
从数据行 R 中,取出 a 字段到表 t2 里去查找;
取出表 t2 中满足条件的行,跟 R 组成一行,作为结果集的一部分;
重复执行步骤 1 到 3,直到表 t1 的末尾循环结束。
这个过程是先遍历表 t1,然后根据从表 t1 中取出的每行数据中的 a 值,去表 t2 中查找满足条件的记录。在形式上,这个过程就跟我们写程序时的嵌套查询类似,并且可以用上被驱动表的索引,所以我们称之为“Index Nested-Loop Join”,简称 NLJ。
它对应的流程图如下所示:
图 2 Index Nested-Loop Join 算法的执行流程
在这个流程里:
对驱动表 t1 做了全表扫描,这个过程需要扫描 100 行;
而对于每一行 R,根据 a 字段去表 t2 查找,走的是树搜索过程。由于我们构造的数据都是一一对应的,因此每次的搜索过程都只扫描一行,也是总共扫描 100 行;
所以,整个执行流程,总扫描行数是 200。
现在我们知道了这个过程,再试着回答一下文章开头的两个问题。
先看第一个问题:能不能使用 join?
假设不使用 join,那我们就只能用单表查询。我们看看上面这条语句的需求,用单表查询怎么实现。
执行select * from t1,查出表 t1 的所有数据,这里有 100 行;
循环遍历这 100 行数据:
从每一行 R 取出字段 a 的值 $R.a;
执行select * from t2 where a=$R.a
把返回的结果和 R 构成结果集的一行。
可以看到,在这个查询过程,也是扫描了 200 行,但是总共执行了 101 条语句,比直接 join 多了 100 次交互。除此之外,客户端还要自己拼接 SQL 语句和结果。
显然,这么做还不如直接 join 好。
我们再来看看第二个问题:怎么选择驱动表?
在这个 join 语句执行过程中,驱动表是走全表扫描,而被驱动表是走树搜索。
假设被驱动表的行数是 M。每次在被驱动表查一行数据,要先搜索索引 a,再搜索主键索引。每次搜索一棵树近似复杂度是以 2 为底的 M 的对数,记为 log2M,所以在被驱动表上查一行的时间复杂度是 2*log2M。
假设驱动表的行数是 N,执行过程就要扫描驱动表 N 行,然后对于每一行,到被驱动表上匹配一次。
因此整个执行过程,近似复杂度是 N + N*2*log2M。
显然,N 对扫描行数的影响更大,因此应该让小表来做驱动表。
如果你没觉得这个影响有那么“显然”, 可以这么理解:N 扩大 1000 倍的话,扫描行数就会扩大 1000 倍;而 M 扩大 1000 倍,扫描行数扩大不到 10 倍。
到这里小结一下,通过上面的分析我们得到了两个结论:
使用 join 语句,性能比强行拆成多个单表执行 SQL 语句的性能要好;
如果使用 join 语句的话,需要让小表做驱动表。
但是,你需要注意,这个结论的前提是“可以使用被驱动表的索引”。
接下来,我们再看看被驱动表用不上索引的情况。

Simple Nested-Loop Join

现在,我们把 SQL 语句改成这样:
select * from t1 straight_join t2 on (t1.a=t2.b);
由于表 t2 的字段 b 上没有索引,因此再用图 2 的执行流程时,每次到 t2 去匹配的时候,就要做一次全表扫描。
你可以先设想一下这个问题,继续使用图 2 的算法,是不是可以得到正确的结果呢?如果只看结果的话,这个算法是正确的,而且这个算法也有一个名字,叫做“Simple Nested-Loop Join”。
但是,这样算来,这个 SQL 请求就要扫描表 t2 多达 100 次,总共扫描 100*1000=10 万行。
这还只是两个小表,如果 t1 和 t2 都是 10 万行的表(当然了,这也还是属于小表的范围),就要扫描 100 亿行,这个算法看上去太“笨重”了。
当然,MySQL 也没有使用这个 Simple Nested-Loop Join 算法,而是使用了另一个叫作“Block Nested-Loop Join”的算法,简称 BNL。

Block Nested-Loop Join

这时候,被驱动表上没有可用的索引,算法的流程是这样的:
把表 t1 的数据读入线程内存 join_buffer 中,由于我们这个语句中写的是 select *,因此是把整个表 t1 放入了内存;
扫描表 t2,把表 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 join 条件的,作为结果集的一部分返回。
这个过程的流程图如下:
图 3 Block Nested-Loop Join 算法的执行流程
对应地,这条 SQL 语句的 explain 结果如下所示:
图 4 不使用索引字段 join 的 explain 结果
可以看到,在这个过程中,对表 t1 和 t2 都做了一次全表扫描,因此总的扫描行数是 1100。由于 join_buffer 是以无序数组的方式组织的,因此对表 t2 中的每一行,都要做 100 次判断,总共需要在内存中做的判断次数是:100*1000=10 万次。
前面我们说过,如果使用 Simple Nested-Loop Join 算法进行查询,扫描行数也是 10 万行。因此,从时间复杂度上来说,这两个算法是一样的。但是,Block Nested-Loop Join 算法的这 10 万次判断是内存操作,速度上会快很多,性能也更好。
接下来,我们来看一下,在这种情况下,应该选择哪个表做驱动表。
假设小表的行数是 N,大表的行数是 M,那么在这个算法里:
两个表都做一次全表扫描,所以总的扫描行数是 M+N;
内存中的判断次数是 M*N。
可以看到,调换这两个算式中的 M 和 N 没差别,因此这时候选择大表还是小表做驱动表,执行耗时是一样的。
然后,你可能马上就会问了,这个例子里表 t1 才 100 行,要是表 t1 是一个大表,join_buffer 放不下怎么办呢?
join_buffer 的大小是由参数 join_buffer_size 设定的,默认值是 256k。如果放不下表 t1 的所有数据话,策略很简单,就是分段放。我把 join_buffer_size 改成 1200,再执行:
select * from t1 straight_join t2 on (t1.a=t2.b);
执行过程就变成了:
扫描表 t1,顺序读取数据行放入 join_buffer 中,放完第 88 行 join_buffer 满了,继续第 2 步;
扫描表 t2,把 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 join 条件的,作为结果集的一部分返回;
清空 join_buffer;
继续扫描表 t1,顺序读取最后的 12 行数据放入 join_buffer 中,继续执行第 2 步。
执行流程图也就变成这样:
图 5 Block Nested-Loop Join -- 两段
图中的步骤 4 和 5,表示清空 join_buffer 再复用。
这个流程才体现出了这个算法名字中“Block”的由来,表示“分块去 join”。
可以看到,这时候由于表 t1 被分成了两次放入 join_buffer 中,导致表 t2 会被扫描两次。虽然分成两次放入 join_buffer,但是判断等值条件的次数还是不变的,依然是 (88+12)*1000=10 万次。
我们再来看下,在这种情况下驱动表的选择问题。
假设,驱动表的数据行数是 N,需要分 K 段才能完成算法流程,被驱动表的数据行数是 M。
注意,这里的 K 不是常数,N 越大 K 就会越大,因此把 K 表示为λ*N,显然λ的取值范围是 (0,1)。
所以,在这个算法的执行过程中:
扫描行数是 N+λ*N*M;
内存判断 N*M 次。
显然,内存判断次数是不受选择哪个表作为驱动表影响的。而考虑到扫描行数,在 M 和 N 大小确定的情况下,N 小一些,整个算式的结果会更小。
所以结论是,应该让小表当驱动表。
当然,你会发现,在 N+λ*N*M 这个式子里,λ才是影响扫描行数的关键因素,这个值越小越好。
刚刚我们说了 N 越大,分段数 K 越大。那么,N 固定的时候,什么参数会影响 K 的大小呢?(也就是λ的大小)答案是 join_buffer_size。join_buffer_size 越大,一次可以放入的行越多,分成的段数也就越少,对被驱动表的全表扫描次数就越少。
这就是为什么,你可能会看到一些建议告诉你,如果你的 join 语句很慢,就把 join_buffer_size 改大。
理解了 MySQL 执行 join 的两种算法,现在我们再来试着回答文章开头的两个问题
第一个问题:能不能使用 join 语句?
如果可以使用 Index Nested-Loop Join 算法,也就是说可以用上被驱动表上的索引,其实是没问题的;
如果使用 Block Nested-Loop Join 算法,扫描行数就会过多。尤其是在大表上的 join 操作,这样可能要扫描被驱动表很多次,会占用大量的系统资源。所以这种 join 尽量不要用。
所以你在判断要不要使用 join 语句时,就是看 explain 结果里面,Extra 字段里面有没有出现“Block Nested Loop”字样。
第二个问题是:如果要使用 join,应该选择大表做驱动表还是选择小表做驱动表?
如果是 Index Nested-Loop Join 算法,应该选择小表做驱动表;
如果是 Block Nested-Loop Join 算法:
在 join_buffer_size 足够大的时候,是一样的;
在 join_buffer_size 不够大的时候(这种情况更常见),应该选择小表做驱动表。
所以,这个问题的结论就是,总是应该使用小表做驱动表。
当然了,这里我需要说明下,什么叫作“小表”
我们前面的例子是没有加条件的。如果我在语句的 where 条件加上 t2.id<=50 这个限定条件,再来看下这两条语句:
select * from t1 straight_join t2 on (t1.b=t2.b) where t2.id<=50;
select * from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=50;
注意,为了让两条语句的被驱动表都用不上索引,所以 join 字段都使用了没有索引的字段 b。
但如果是用第二个语句的话,join_buffer 只需要放入 t2 的前 50 行,显然是更好的。所以这里,“t2 的前 50 行”是那个相对小的表,也就是“小表”。
我们再来看另外一组例子:
select t1.b,t2.* from t1 straight_join t2 on (t1.b=t2.b) where t2.id<=100;
select t1.b,t2.* from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=100;
这个例子里,表 t1 和 t2 都是只有 100 行参加 join。但是,这两条语句每次查询放入 join_buffer 中的数据是不一样的:
表 t1 只查字段 b,因此如果把 t1 放到 join_buffer 中,则 join_buffer 中只需要放入 b 的值;
表 t2 需要查所有的字段,因此如果把表 t2 放到 join_buffer 中的话,就需要放入三个字段 id、a 和 b。
这里,我们应该选择表 t1 作为驱动表。也就是说在这个例子里,“只需要一列参与 join 的表 t1”是那个相对小的表。
所以,更准确地说,在决定哪个表做驱动表的时候,应该是两个表按照各自的条件过滤,过滤完成之后,计算参与 join 的各个字段的总数据量,数据量小的那个表,就是“小表”,应该作为驱动表。

小结

今天,我和你介绍了 MySQL 执行 join 语句的两种可能算法,这两种算法是由能否使用被驱动表的索引决定的。而能否用上被驱动表的索引,对 join 语句的性能影响很大。
通过对 Index Nested-Loop Join 和 Block Nested-Loop Join 两个算法执行过程的分析,我们也得到了文章开头两个问题的答案:
如果可以使用被驱动表的索引,join 语句还是有其优势的;
不能使用被驱动表的索引,只能使用 Block Nested-Loop Join 算法,这样的语句就尽量不要使用;
在使用 join 的时候,应该让小表做驱动表。
最后,又到了今天的问题时间。
我们在上文说到,使用 Block Nested-Loop Join 算法,可能会因为 join_buffer 不够大,需要对被驱动表做多次全表扫描。
我的问题是,如果被驱动表是一个大表,并且是一个冷数据表,除了查询过程中可能会导致 IO 压力大以外,你觉得对这个 MySQL 服务还有什么更严重的影响吗?(这个问题需要结合上一篇文章的知识点)
你可以把你的结论和分析写在留言区,我会在下一篇文章的末尾和你讨论这个问题。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

我在上一篇文章最后留下的问题是,如果客户端由于压力过大,迟迟不能接收数据,会对服务端造成什么严重的影响。
这个问题的核心是,造成了“长事务”。
至于长事务的影响,就要结合我们前面文章中提到的锁、MVCC 的知识点了。
如果前面的语句有更新,意味着它们在占用着行锁,会导致别的语句更新被锁住;
当然读的事务也有问题,就是会导致 undo log 不能被回收,导致回滚段空间膨胀。
评论区留言点赞板:
@老杨同志 提到了更新之间会互相等锁的问题。同一个事务,更新之后要尽快提交,不要做没必要的查询,尤其是不要执行需要返回大量数据的查询;
@长杰 同学提到了 undo 表空间变大,db 服务堵塞,服务端磁盘空间不足的例子。
分享给需要的人,Ta购买本课程,你将得20
生成海报并分享

赞 93

提建议

上一篇
33 | 我查这么多数据,会不会把数据库内存打爆?
下一篇
35 | join语句怎么优化?
unpreview
 写留言

精选留言(175)

  • 没时间了ngu
    置顶
    2019-01-30
    join这种用的多的,看完还是有很大收获的。像之前讲的锁之类,感觉好抽象,老是记不住,唉。

    作者回复: 嗯嗯,因为其实每个同学的只是背景不一样。 这45讲里,每个同学都能从部分文章感觉到有收获,我觉得也很好了😆 不过 锁其实用得也多的。。 我以前负责业务库的时候,被开发同学问最多的问题之一就是,为啥死锁了^_^

    共 8 条评论
    96
  • 信信
    2019-01-30
    老师好,回答本期问题:如果驱动表分段,那么被驱动表就被多次读,而被驱动表又是大表,循环读取的间隔肯定得超1秒,这就会导致上篇文章提到的:“数据页在LRU_old的存在时间超过1秒,就会移到young区”。最终结果就是把大部分热点数据都淘汰了,导致“Buffer pool hit rate”命中率极低,其他请求需要读磁盘,因此系统响应变慢,大部分请求阻塞。

    作者回复: 👍

    共 19 条评论
    343
  • 斜面镜子 Bill
    2019-01-31
    因为 join_buffer 不够大,需要对被驱动表做多次全表扫描,也就造成了“长事务”。除了老师上节课提到的导致undo log 不能被回收,导致回滚段空间膨胀问题,还会出现:1. 长期占用DML锁,引发DDL拿不到锁堵慢连接池; 2. SQL执行socket_timeout超时后业务接口重复发起,导致实例IO负载上升出现雪崩;3. 实例异常后,DBA kill SQL因繁杂的回滚执行时间过长,不能快速恢复可用;4. 如果业务采用select *作为结果集返回,极大可能出现网络拥堵,整体拖慢服务端的处理;5. 冷数据污染buffer pool,block nested-loop多次扫描,其中间隔很有可能超过1s,从而污染到lru 头部,影响整体的查询体验。
    展开

    作者回复: 👍很赞 之前知识点的也都加进来啦

    共 6 条评论
    209
  • 老杨同志
    2019-01-30
    对被驱动表进行全表扫描,会把冷数据的page加入到buffer pool.,并且block nested-loop要扫描多次,两次扫描的时间可能会超过1秒,使lru的那个优化失效,把热点数据从buffer pool中淘汰掉,影响正常业务的查询效率

    作者回复: 漂亮👍

    60
  • Zzz
    2019-01-30
    林老师,我没想清楚为什么会进入young区域。假设大表t大小是M页>old区域N页,由于Block Nested-Loop Join需要对t进行k次全表扫描。第一次扫描时,1~N页依次被放入old区域,访问N+1页时淘汰1页,放入N+1页,以此类推,第一次扫描结束后old区域存放的是M-N+1~M页。第二次扫描开始,访问1页,淘汰M-N+1页,放入1页。可以把M页想象成一个环,N页想象成在这个环上滑动的窗口,由于M>N,不管是哪次扫描,需要访问的页都不会在滑动窗口上,所以不会存在“被访问的时候数据页在 LRU 链表中存在的时间超过了 1 秒“而被放入young的情况。我能想到的会被放入young区域的情况是,在当次扫描中,由于一页上有多行数据,需要对该页访问多次,超过了1s,不管这种情况就和t大小没关系了,而是由于page size太大,而一行数据太少。
    展开

    作者回复: 你说得对,分两类情况, 小于bp 3/8的情况会跑到young, 大于3/8的会影响young部分的更新

    共 5 条评论
    40
  • 清风浊酒
    2019-01-30
    老师您好,left join 和 right join 会固定驱动表吗?

    作者回复: 不会强制,但是由于语义的关系,大概率上是按照语句上写的关系去驱动,效率是比较高的

    共 2 条评论
    36
  • 泡泡爱dota
    2019-01-31
    explain select * from t1 straight_join t2 on (t1.a=t2.a) where t1.a < 50; 老师, 这条sql为什么t1.a的索引没有用上, t1还是走全表

    作者回复: 如果数据量不够多,并且满足a<50的行,占比比较高的话,优化器有可能会认为“还要回表,还不如直接扫主键id”

    共 4 条评论
    36
  • 郝攀刚จุ๊บ
    2019-01-30
    业务逻辑关系,一个SQL中left join7,8个表。这我该怎么优化。每次看到这些脑壳就大!

    作者回复: 😓 Explain下,没用用index nested-loop 的全要优化

    共 7 条评论
    25
  • 萤火虫
    2019-01-30
    年底了有一种想跳槽的冲动 身在武汉的我想出去看看 可一想到自身的能力和学历 又不敢去了 苦恼...

    作者回复: 今年这情况还是要先克制一下^_^ 先把内功练起来😆

    共 4 条评论
    24
  • amazon1011
    2019-01-30
    这个专栏受益匪浅,老师再搞个内核源码专栏:)
    共 2 条评论
    15
  • 抽离の❤️
    2019-01-30
    早上听老师一节课感觉获益匪浅

    作者回复: 好早呀🤝

    14
  • 张旭
    2020-09-28
    NLJ:驱动表选出一行行数据到被驱动表中查找 BNL:把驱动表的数据分段读入join buffer中,然后和被驱动表join MRR:针对回表操作做的优化,把索引上的主键排序,然后再回表,这样就可以随机读变为顺序读 BKA:是针对NLJ的优化,不是像NLJ一行行取出数据去被驱动表查找,而是一次取出一批到join buffer中然后到被驱动表中查找,获得关联的记录,再使用MRR优化获取最终结果
    展开
    14
  • 思考特~
    2019-03-03
    老师,这边想请教一个困扰很久的问题,用mysql经常会制定这么一个规则,不允许多表join。从实际情况看,几乎不太可能遵守这个规则,有个交易的业务场景涉及 用户表 300W、订单表 900W、支付表 900W,每次需要查一个用户下面的订单信息可能就有点慢了,但是还能接受,如果是查询一个团体的订单信息,这个量就非常可观了,查询有时候根本返回不了结果。根本无法避免多表Join,所以想问问老师,在这种需要多表Join业务场景下,如何设计表,来提升性能?或者有这方面推荐的资料可以参考的
    展开

    作者回复: 我的建议就是用好NLJ和BKA算法😆

    共 5 条评论
    12
  • 呵呵
    2019-02-11
    老师,新年好! 优化器会自动选择小表作为驱动表,那么我们人为把小表写成驱动表还有意义吗?

    作者回复: 新年好 嗯优化器大部分时候会选对,如果选不对,我们就得自己强行指定了哈 其实了解这个原理主要还是指导我们根据最优的join顺序,来创建被驱动表字段上的索引

    13
  • 柚子
    2019-01-30
    join在热点表操作中,join查询是一次给两张表同时加锁吧,会不会增大锁冲突的几率? 业务中肯定要使用被驱动表的索引,通常我们是先在驱动表查出结果集,然后再通过in被驱动表索引字段,分两步查询,这样是否比直接join委托点?

    作者回复: join也是普通查询,都不需要加锁哦,参考下MVCC那篇; 就是我们文中说的,“分两步查询,先查驱动表,然后查多个in”,如果可以用上被驱动表的索引,我觉得可以用上Index Nested-Loop Join算法,其实效果是跟拆开写类似的

    共 4 条评论
    11
  • 啊啊啊哦哦
    2019-03-31
    NLJ join算法下。 驱动表假设全表先扫描。 这个全表扫描的数据存放在哪。 buffer bool中还是。全表扫描到单独的read buffer中? 我的理解是。 驱动表全表扫描的数据。是从buffer bool中找驱动表的数据到 read buffer中。如果buffer bool 没有。那么从磁盘。到buffer bool 然后在到read buffer 中。 我的理解对吗。

    作者回复: 不是的 如果是NLJ,就是遍历过程中直接到被驱动表去匹配,匹配满足条件的行,就直接作为结果集发出去了,不需要临时内存

    10
  • 403
    2019-02-09
    用那个作为驱动表,mysql会自己优化么?

    作者回复: 会的

    10
  • 1024
    2019-02-19
    文中解释NLJ和BNL时间复杂度相同,都是M*N。但是对于BNL性能好于NLJ的原因只是提到:"BNL的判断是在内存中操作,速度上会快很多,性能也更好"。请问老师?这句话的言外之意是: NLJ的判断不是在内存中操作吗?不将数据加载到内存,CPU如何进行判断呢?

    作者回复: 这个我在答疑文章中展开哈,其实还是“内存数据是从哪里来的”的问题。 我们这里说的是BNL比Simple nested loop 快哈

    共 4 条评论
    8
  • Ryoma
    2019-01-31
    上文中使用索引时扫描行数为200,但是根据字段a去做树搜索时,由于字段a是普通索引,在找到匹配值后还会继续匹配,实际上每个循环都做了至少两次的行扫描。 老师,这么理解对么?

    作者回复: 是的,不过在MySQL 里面,这样算“扫描一行”,实际上确实做了两次树搜索

    10
  • felix
    2019-01-31
    不让用join,那用什么呢,用逗号分隔两表? join有多个条件的话,写在on后面和where后面有什么区别吗?

    作者回复: 逗号分隔两表还是join 😄 下一篇会讲到优化,主要思路就是用上被驱动表索引哈

    9