38 | 矩阵(下):如何使用矩阵操作进行协同过滤推荐?
下载APP
关闭
渠道合作
推荐作者
38 | 矩阵(下):如何使用矩阵操作进行协同过滤推荐?
2019-03-13 黄申 来自北京
《程序员的数学基础课》
课程介绍
讲述:黄申
时长14:12大小12.97M
你好,我是黄申。今天我们来聊聊矩阵操作和推荐算法的关系。
我这里说的推荐,是指为用户提供可靠的建议、并协助用户挑选物品的一种技术。一个好的推荐系统需要建立在海量数据挖掘基础之上,并根据用户所处的情景和兴趣特点,向用户推荐可能感兴趣的信息和商品。
协同过滤(Collaborative Filtering)是经典的推荐算法之一,它充分利用了用户和物品之间已知的关系,为用户提供新的推荐内容。我会从这种二元关系出发,给你讲讲如何使用矩阵计算,来实现协同过滤推荐算法。
用矩阵实现推荐系统的核心思想
矩阵中的二维关系,除了可以表达图的邻接关系,还可以表达推荐系统中用户和物品的关系。如果你不懂推荐系统,不用急,我这里先给你简单讲讲它的核心思想。
简单地理解就是,推荐系统会根据用户所处的场景和个人喜好,推荐他们可能感兴趣的信息和商品。比如,你在阅读一部电影的影评时,系统给你推荐了其他“你可能也感兴趣的电影”。可以看出来,推荐系统中至少有 2 个重要的角色:用户和物品。用户是系统的使用者,物品就是将要被推荐的候选对象。
例如,亚马逊网站的顾客就是用户,网站所销售的商品就是物品。需要注意的是,除了用户角色都是现实中的自然人,某些场景下被推荐的物品可能也是现实中的自然人。例如,一个招聘网站会给企业雇主推荐合适的人才,这时候应聘者承担的是物品角色。
而一个好的推荐算法,需要充分挖掘用户和物品之间的关系。我们可以通过矩阵来表示这种二元关系。我这里有一个例子,我们用矩阵 来表示用户对物品喜好程度。
其中第 行是第 个用户的数据,而第 j 列是用户对第 j 个物品的喜好程度。我们用 表示这个数值。这里的喜好程度可以是用户购买商品的次数、对书籍的评分等等。
假设我们用一个 0 到 1 之间的小数表示。有了这种矩阵,我们就可以通过矩阵的操作,充分挖掘用户和物品之间的关系。下面,我会使用经典的协同过滤算法,来讲解矩阵在其中的运用。
在此之前,我们先来看什么是协同过滤。你可以把它理解为最直观的“口口相传”。假设我们愿意接受他人的建议,尤其是很多人都向你建议的时候。其主要思路就是利用已有用户群过去的行为或意见,预测当前用户最可能喜欢哪些东西。根据推荐依据和传播的路径,又可以进一步细分为基于用户的过滤和基于物品的过滤。
基于用户的过滤
首先,我们来看基于用户的协同过滤。它是指给定一个用户访问(我们假设有访问就表示有兴趣)物品的数据集合,找出和当前用户历史行为有相似偏好的其他用户,将这些用户组成“近邻”,对于当前用户没有访问过的物品,利用其近邻的访问记录来预测。我画了一张图方便你理解。
根据这张图的访问关系来看,用户 A 访问了物品 A 和 C,用户 B 访问了物品 B,用户 C 访问了物品 A,C 和 D。我们计算出来,用户 C 是 A 的近邻,而 B 不是。因此系统会更多地向用户 A 推荐用户 C 访问的物品 D。
理解了这个算法的基本概念,我们来看看如何使用公式来表述它。假设有 m 个用户,n 个物品,那么我们就能使用一个 m×n 维的矩阵 来表示用户对物品喜好的二元关系。基于这个二元关系,我们可以列出下面这两个公式:
其中,第一个公式比较容易理解,它的核心思想是计算用户和用户之间的相似度。完成了这一步我们就能找到给定用户的“近邻”。
我们可以使用向量空间模型中的距离或者是夹角余弦来处理,在这里我使用了夹角余弦,其中 , 表示用户 和 的相似度,而 , 表示矩阵中第 行的行向量,, 表示矩阵中第 行的行向量。分子是两个表示用户的行向量之点乘,而分母是这两个行向量 范数的乘积。
第二个公式利用第一个公式所计算的用户间相似度,以及用户对物品的喜好度,预测任一个用户对任一个物品的喜好度。其中 表示第 用户对第 个物品的喜好度, 表示用户 和 之间的相似度, 表示用户 对物品 的喜好度。注意这里最终需要除以 ,是为了进行归一化。
从这个公式可以看出,如果 越大, 对最终 的影响越大,反之如果 越小, 对最终 的影响越小,充分体现了“基于相似用户”的推荐。
如果你无法理解如何把这两个公式对应为矩阵操作,没关系,我下面会通过之前介绍的喜好度矩阵 的示例,把这两个公式逐步拆解,并对应到矩阵上的操作,你一看就能明白了。
首先,我们来看第一个关于夹角余弦的公式。
在介绍向量空间模型的时候,我提到夹角余弦可以通过向量的点乘来实现。这对矩阵同样适用,我们可以采用矩阵点乘自身的转置来实现,也就是 。矩阵 的每一行是某个用户的行向量,每个分量表示用户对某个物品的喜好程度。而矩阵 的每一列是某个用户的列向量,每个分量表示用户对某个物品的喜好程度。
我们假设 的结果为矩阵 ,那么 就表示用户 和用户 这两者喜好度向量的点乘结果,它就是夹角余弦公式中的分子。如果 等于 ,那么这个计算值也是夹角余弦公式分母的一部分。从矩阵的角度来看, 中任何一个元素都可能用于夹角余弦公式的分子,而对角线上的值会用于夹角余弦公式的分母。这里我们仍然使用之前的喜好度矩阵示例,来计算矩阵 和矩阵 。
首先我们来看 的计算。
然后我们使用 来计算 。我用下面这张图表示矩阵中的元素和夹角余弦计算的对应关系。
明白了上面这个对应关系,我们就可以利用矩阵 ,获得任意两个用户之间的相似度,并得到一个 m×m 维的相似度矩阵 。矩阵 中 的取值为第 个用户与第 个用户的相似度。这个矩阵是一个沿对角线对称的矩阵。根据夹角余弦的定义, 和 是相等的。通过示例的矩阵 ,我们可以计算矩阵 。我把相应的结果列在了下方。
接下来,我们再来看第二个公式。
从矩阵的角度来看,现在我们已经得到用户相似度矩阵 ,再加上用户对物品的喜好度矩阵 ,现在需要计算任意用户对任意物品的喜好度推荐矩阵 。
为了实现上面这个公式的分子部分,我们可以使用 和 的点乘。我们假设点乘后的结果矩阵为 。这里我列出了根据示例计算得到的矩阵 。
分母部分可以使用 矩阵的按行求和来实现。我们假设按行求和的矩阵为 。根据示例计算就可以得到 。
最终,我们使用 和 * 的元素对应除法,就可以求得矩阵 。
既然已经有 这个喜好度矩阵了,为什么还要计算 这个喜好度矩阵呢?实际上, 是已知的、有限的喜好度。例如用户已经看过的、购买过的、或评过分的物品。而 是我们使用推荐算法预测出来的喜好度。
即使一个用户对某个物品从未看过、买过、或评过分,我们依然可以通过矩阵 ,知道这位用户对这个物品大致的喜好程度,从而根据这个预估的分数进行物品的推荐,这也是协同过滤的基本思想。从根据示例计算的结果也可以看出这点,在原始矩阵 中第 1 个用户对第 3 个物品的喜好度为 0。可是在最终的喜好度推荐矩阵 P 中,第 1 个用户对第 3 个物品的喜好度为 0.278,已经明显大于 0 了,因此我们就可以把物品 3 推荐给用户 1。
上面这种基于用户的协同过滤有个问题,那就是没有考虑到用户的喜好程度是不是具有可比性。假设用户的喜好是根据对商品的评分来决定的,有些用户比较宽容,给所有的商品都打了很高的分,而有些用户比较严苛,给所有商品的打分都很低。分数没有可比性,这就会影响相似用户查找的效果,最终影响推荐结果。这个时候我们可以采用之前介绍的特征值变化,对于原始的喜好度矩阵,按照用户的维度对用户所有的喜好度进行归一化或者标准化处理,然后再进行基于用户的协同过滤。
基于物品的过滤
基于物品的协同过滤是指利用物品相似度,而不是用户间的相似度来计算预测值。我同样用图来帮助你理解。
在这张图中,物品 A 和 C 因为都被用户 A 和 B 同时访问,因此它们被认为相似度更高。当用户 C 访问过物品 A 后,系统会更多地向用户推荐物品 C,而不是其他物品。
基于物品的协同过滤同样有两个公式,你可以看一下。
如果你弄明白了基于用户的过滤,那么这两个公式也就不难理解了。第一个公式的核心思想是计算物品和物品之间的相似度,在这里我仍然使用夹角余弦。其中 , 表示物品 和 的相似度,而 表示了 中第 列的列向量,而 表示了 中第 列的列向量。分子是两个表示物品的列向量之点乘,而分母是这两个列向量 范数的乘积。
第二个公式利用第一个公式所计算的物品间相似度,和用户对物品的喜好度,预测任一个用户对任一个物品的喜好度。其中 表示第 用户对第 个物品的喜好度, 表示用户 对物品 的喜好度, 表示物品 和 之间的相似度,注意这里除以 是为了进行归一化。从这个公式可以看出,如果 越大, 对最终 的影响越大,反之如果 越小, 对最终 的影响越小,充分体现了“基于相似物品”的推荐。
类似地,用户喜好程度的不一致性,同样会影响相似物品查找的效果,并最终影响推荐结果。我们也需要对于原始的喜好度矩阵,按照用户的维度对用户的所有喜好度,进行归一化或者标准化处理。
总结
今天我首先简要地介绍了推荐系统的概念和主要思想。为了给用户提供可靠的结果,推荐系统需要充分挖掘历史数据中,用户和物品之间的关系。协同过滤的推荐算法就很好地体现了这一点。
一旦涉及用户和物品的这种二元关系,矩阵就有用武之地了。我通过矩阵来表示用户和物品的关系,并通过矩阵计算来获得协同过滤的结果。协同过滤分为基于用户的过滤和基于物品的过滤两种,它们的核心思想都是相同的,因此矩阵操作也是类似的。在这两个应用场景下,矩阵点乘体现了多个用户或者物品之间的相似程度,以及聚集后的相似程度所导致的最终推荐结果。
当然,基于用户和物品间关系的推荐算法有很多,对矩阵的操作也远远不止点乘、按行求和、元素对应乘除法。我后面会介绍如何使用矩阵的主成分分析或奇异值分解,来进行物品的推荐。
思考题
我在介绍推荐算法时,提到了基于物品的协同过滤。请参照基于用户的协同过滤,写出相应的矩阵操作步骤。
欢迎留言和我分享,也欢迎你在留言区写下今天的学习笔记。你可以点击“请朋友读”,把今天的内容分享给你的好友,和他一起精进。
分享给需要的人,Ta购买本课程,你将得20元
生成海报并分享
赞 2
提建议
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
上一篇
37 | 矩阵(上):如何使用矩阵操作进行PageRank计算?
下一篇
39 | 线性回归(上):如何使用高斯消元求解线性方程组?
精选留言(14)
- qinggeouye2019-03-24基于物品的协同过滤矩阵操作: Y = X'·X 物品相似度: IS = [ [1.49655792, 0.04042765, 0. ], [0.04042765, 1.22789784, 1.10442966], [0. , 1.10442966, 1.49655792] ] 用户对物品对喜好度 归一化矩阵: P = [[0.26833698, 0.38846963, 0.34319338], [0.97369679, 0.0263032 , 0. ], [0.00886581, 0.47294886, 0.51818533], [0. , 0.42461935, 0.57538065]] 应该是这样。markdown 表示 https://github.com/qinggeouye/GeekTime/tree/master/MathematicProgrammer/38_Matrix2CollaborativeFiltering展开共 1 条评论6
- 拉欧2019-03-13基于物品的相似度计算时,物品喜好度矩阵是用户喜好度矩阵的转置,是这样吗? 是选择基于用户的协同过滤还是基于物品的协同过滤,要考虑用户和物品哪一个维度数量比较少,相乘后产生的矩阵小,可以这样理解么?
作者回复: 第一个理解是对的。 第二个观点从效率的角度出发是合理的,不过也要结合具体实践中推荐的效果好坏来选择具体的算法,效率只是一方面。
6 - 罗耀龙@坐忘2020-05-02茶艺师学编程 思考题:当基于物品的过滤,协同过滤推荐之中有怎么样的矩阵操作? 因为是基于物品,对于原喜好度矩阵X来说,就是里面的列向量。在求Y,那么就应该是X′X,算出对应的is矩阵。 同样的,在求P矩阵中,也应该用X′。展开共 1 条评论2
- 不熬夜爱益力多的小松2020-08-10这一章有较多东西不理解,其中基于用户的过滤中 X.X`得出的矩阵Y的意义是什么,是仅为为了余弦公式的分子吗?然后得出的Y如何使用,文章都是没有说到本质,很难理解
作者回复: 其中XX'主要是用于计算余弦,当然也可以直接调用编程库里所提供的函数。这里主要是让读者熟悉矩阵的操作。
1 - teddytyy2019-12-20基于相似物品的推荐中,物品矩阵中存放的数据代表什么?值又是什么呢?
作者回复: 这里的物品矩阵具体是指哪个?
共 2 条评论1 - Paul Shan2019-09-30先用夹角余弦计算两两用户之间的相似度,用这个相似度再重新计算用户i对某个物体j的喜好程度。即用所有用户对物品j的喜欢程度按照和用户i的相似度加权计算。今天的内容有点像马尔可夫过程,用户的喜好在原来的图中按照用户之间的相似度扩散了。
作者回复: 是的,有些类似,不过CF强调两种角色,user和item
1 - 阿信2019-07-20刚又翻了下《数学之美》,基于物品相似度推荐,感觉可以借用信息量中“互信息”这个概念来描述。 “互信息”描述两个随机事件“相关性”的量化度量。这里用来描述物品的相关性。 如果物品A、B,被同一个用户购买的次数,在总购买次数中占比较大,则认为二者相关性高,可以作为彼此的候选推荐商品。 基于用户相似度推荐,计算用户对某个商品的喜好度,实践时选取哪些考量特征会是一个难点。如购买次数,针对快消品(如食品、饮料等),考量价值较大;但如果是家电之类的,可能需要考虑报障维修次数、回访调查满意度等信息。 如果是百货类的电商平台,基于物的相似度推荐,通用性是否更好?展开
作者回复: 这可能要看具体的推荐需求,比如是更想推荐同类商品、还是跨品类商品?
1 - aidway2022-11-08 来自河南计算的物品相似度矩阵为: array([[1. , 0.03 , 0. ], [0.03 , 1. , 0.848], [0. , 0.848, 1. ]]) 用户-物品矩阵为: array([[0.113, 0.108, 0.092], [0.786, 0.013, 0. ], [0.026, 0.803, 0.804], [0. , 0.19 , 0.227]]) 请问是这个吗?展开
- 0139232022-09-14 来自上海学习完一节,谢谢!
- Geek_7bc0352022-02-10想问下,哪个pi,j公式里的m是啥意思,总人数嘛。
作者回复: 是的,m和n,一个是总人数,一个是总物品数
- 常振华2020-11-19还是得复习一下线性代数才行,不然公式不好懂,原理倒是容易懂
作者回复: 确实如此,懂了基本原理,再来学习公式会相对容易
- 建强2020-10-04基于物品的协同过滤矩阵操作步骤: 第一步:计算任意两个物品间的相似度: 这一步中,利用喜好度矩阵X计算两个物品的夹角余弦值,首先把X转置后得到X', 把X'和X进行点乘运算,假设运算后的矩阵为Y,则Y = X'.X,再用Y来计算IS,IS[j1,j2] = Y[j1, j2] / sqrt(Y[j1, j1] * Y[j2, j2]) 第二步:计算推荐矩阵P 这一步中,首先利用物品的相似矩阵is和喜好度矩阵X,计算出推荐公式中的分子矩阵,假设为ISP,则ISP = X.IS,然后对IS中的每一列求和得到推荐公式中的分母矩阵,假设为ISR,则ISR[i,j] = sum(IS[:,j]),最后计算推荐矩阵P = ISP / ISR。展开
- 米饭2020-08-24确实越来越难了,其中使用矩阵求解公式上看了很多遍,尤其是Y 来计算 US这部分,由于老师在图上的公式有笔误,所以看了很多遍才理解,希望老师尽快修改下图中的公式 正确的公式为: us(1, 2)=Σ x(1, j) * x(2, j) / ( sqrt( Σ pow(x(1, j), 2)) * sqrt(Σ pow(x(2, j), 2)) )
作者回复: 好的,我联系一下编辑
- 弋轰2020-08-14使用 Y 来计算 US 的配图是不是有误?分子分母的其中一个 x_{1,j} 应为 x_{2,j} ?
作者回复: 编号有点问题,已经让编辑帮忙修改,多谢
共 2 条评论