开篇词 | 你为什么需要数据分析能力?
开篇词 | 你为什么需要数据分析能力?
讲述:陈旸
时长08:01大小18.39M
赞 190
提建议
精选留言(315)
- Hank_Yan2018-12-17业务洞察是分析数据的前提,分析数据是理解数据的前提,理解数据是数据挖掘的前提。从业务到数据再到挖掘,每一步环环相扣,相辅相成。业务千变万化,规律亘古不变。期待老师提纲挈领,从整体思路点拨,用经典案例教学,让每一位学生学到真本事,共勉。
作者回复: 这位老师总结的也很到位👍
共 2 条评论181 - 别问2018-12-17求推荐一些数据分析的书,谢谢。
作者回复: 思维: 《思维简史:从丛林到宇宙》 数据处理 《数据挖掘:概念与技术》 《Pentaho Kettle解决方案》 《精益数据分析》 《Small Data》 《利用Python进行数据分析》
152 - reverse2018-12-19去找吧 ,我已经把我的极客时间数据分析实战45讲的笔记放在github上了,地址: https://github.com/xiaomiwujiecao/geekTimeDataAnalysisInAction 欢迎大家加入一起维护共 9 条评论127
- Alexander2018-12-17期待,当然是以找到相关工作为目的啦。
作者回复: 如果你能15周都坚持下来,每次课都能整理笔记,认真做练习,我也可以给你推荐工作的😄
共 7 条评论77 - 汪汪汪2018-12-17本人是转行学习数据分析,想通过两个月时间自学,顺利拿到offer进入岗位进行实操。目前看了《深入浅出数据分析》那本书,然后学了python基础知识,想请问老师,接下来该如何开展学习计划。我想学python常用的几个库,从爬虫开始获取外部数据,熟悉常用的数据挖掘算法,最后花两个星期学习基础的SQL和excel操作。您的建议是什么?我手上的学习资源比较多,所以得重点筛选。期待老师的回信
作者回复: 多谢关注,1)首先从爬虫开始是不错的,这样你能感受到成长的过程。 2)数据挖掘算法,如果你想了解十大算法的话,理论部分你需要花一些功夫。当然这些在Python中都有类库可以使用。做练习的话,你也可以把这些算法都用一遍,然后看下哪个算法模型的结果更好 3)网上这方面的资源确实比较多,他们大多讲的是理论原理。我认为你更注重的在于实战,因为做项目不仅更有成就感,还能更好的让你理解这些算法、爬虫的原理。 我会在专栏里给你做个“专属题库”,对应爬虫、数据挖掘这些的题目,你可以做个评测,不明白的地方,我也会给你做讲解。 4)资料比较多,但其实不用每个都看一遍。尤其是理论的部分,看一遍就可以了。关键是把它抽出来做个思维导图,方便查询,这样下次看导图就能回忆起来讲的是什么。省时又高效!
共 2 条评论76 - 五岳寻仙2018-12-17老师好!看到这个专栏很兴奋!对数据挖掘/机器学习很感兴趣,自学有段时间了,也接触了不少工具,但遇到具体问题还是很盲目,有下面几个方面的困惑: 1. 如何做好“特征工程”,没有思路,也没有思考方向,看了不少博客,所谓的技巧也都知道了,但遇到问题还是用不好; 2. 对于样本类别不均衡的问题,不会处理,尝试过下采样或过采样,但似乎改变了样本原本的分布,效果不太好; 3. 对各种机器模型输出的结果没有把控能力,搞不懂为何有时效果好,有时效果却很差。 因为没有人带,自学感觉很迷茫,希望能跟随这门课程提升自己应用能力。 另外,想请教一下老师,为了能更好地掌握经典的机器学习算法,有没有必要自己实现一遍?展开
作者回复: 感谢你的热情和关注,我认为非常有必要自己使用这些机器学习算法来解决实际问题。 当然原理可以采用伪代码的方式,把流程画出来即可。项目中,很多时候都是直接使用类库,所以你更应该关注的机器学习的效率和结果。 很多时候,我们在选择模型的时候,都要试,一次会用多种模型,然后看训练结果的好坏,再决定采用哪个模型。 特征工程,以及调试的过程其实就是经验积累的过程,很多时候调参数的时间,比你写程序的时间还要长。但是这个积累过程还是挺重要的,当你有了更多经验之后,这个“试”的效率就会提升!
25 - 猴哥2018-12-19大一新生,刚好是大数据专业,希望接下来的15周里面可以不掉队,多跟着老师学些有用的知识。感觉老师讲的蛮生动的,一定能物超所值,我非常非常非常满意😀
作者回复: 加油 大一新生都开始学数据分析了👍 我当年还没这个觉悟 一定会比你在学校里上课有收获的
20 - 草莓味冰糕2018-12-17我是一个想转商业数据分析与挖掘的生物学(生物信息方向)硕士研究生,很需要有一门课大概能告诉我一个算法或者数学模型适用于哪些商业或者运营的情景,这是我现在急需的,也是对课程的期望,哪些东西可以解决哪些问题,也希望作者能推荐一些类似的书,期望自己能在这么课收获很多,找到自己的路
作者回复: 我上大学的时候,也了解一些生物信息学的情况,非常能理解你的心情和想转到商业数据分析的决心。 我觉得需要从两个方面来下手: 1)工具角度:课程里讲的算法,你可以帮他当做是个工具。他的诞生是从数学原理开始,形成的理论模型。 这些模型都有自己的特点和适用范围。但总的来说,还是工具 2)商业角度:工作或应用中,首先都是从商业角度出发的,尤其是哪些是高频使用的,或者离“钱”更近的地方,也就是决策价值更大的地方。 当然从工具使用到商业价值的转换,还需要你有自己的思维和建模能力 商业相关书籍推荐: 《洛克菲勒留给儿子的38封信》 《商业冒险:华尔街的12个经典故事》 《从0到1:开启商业与未来的秘密》 《商业的本质》 数据分析相关书籍: 《数据挖掘:概念与技术》 《Pentaho Kettle解决方案》 《精益数据分析》 《Small Data》 《利用Python进行数据分析》
共 3 条评论15 - Aggi2018-12-17希望多讲一些分析的思维,以及和实际业务关联的案例的整个流程
作者回复: 这个没问题,专栏中重点就是告诉你如何使用这些工具,以及案例实战训练。当然你也会在案例和工具中,训练你的数据思维,以及对他们的认知
11 - Fergus2018-12-17自己在从事这方面的工作,更多的时候是拿着钉子找锤子,同时朝着“自动化”的方向去改善自己的工作方式。 随着工作的开展,发现自己的基础不扎实、知识过于分散,同时缺乏数据的解读能力,目之所及即是思想的极限。 读完文章和留言已非常有收获,感谢。
作者回复: 感谢关注,你说的我也很有同感。我们处于知识爆炸的时代,参考资料很多,但其实会出现另一个问题:就是知识过于分散。 所以这里,我建议大家要学会整理,每次课程做笔记,总结思维导图。当然课程里,我也会给出思维导图。方便你做知识梳理
共 2 条评论9 - Conan2018-12-19Multi-Dimension: 1. 理解每节课中讲到的概念 2. 重复文章中的代码示例 3. 自己根据已经学到的内容再进行拓展学习 Ask: 1. Google 2. stack overflow 3. 留言提问 Sharing: 1. 把每节课所学整理成笔记在留言里分享展开
作者回复: 加油 总结的不错 你也可以找身边朋友或者同事进行提问。
8 - 任欣2018-12-17老师讲的数据就是这个时代的石油,确实是这样子的,在读研的时候深有体会,实验室的很多科研,项目都需要用到数据分析的思维和能力,工作之后也在为现在的公司处理数据帮助运营人员进行精准营销,无论是传统行业还是互联网行业,这都是一门重要的能力,希望以后能够在课上和老师有更多的交流。
作者回复: 好啊,欢迎交流。同意你说的,传统行业和互联网行业,不论是运营岗,还是营销岗,都需要数据分析能力和思维。
8 - 蜘蛛的梦呓2018-12-26期待:学到技巧,3月份能找到工作。 如何执行:从现在开始,每一篇我都会做笔记。 我觉得, 数据挖掘是根据业务知识,搜索并找到自己的数据,然后根据算法整理分类数据。 数据分析是根据业务知识,取出数据挖掘整理出来的数据,然后进行可视化分析。 两者都需要理解业务知识,但是数据分析对业务能力要求较高,而数据挖掘对技术、算法较高。 描绘事情的时候,在生活中经常会说,大概、左右、上下、很好,这种不确定且主观的词语,其实我更想,习惯把这些定性的事物定量描述。展开7
- 微光lu2018-12-17老师您好,跨专业的研一同学,选了数据挖掘这门课,老师上课主要讲了一些算法 有时候算法原理可以听明白,但是让自己用实际数据编程实践就很困难完成不了,目前学期末了Python才刚简单学了一遍,想问老师算法,编程需要掌握到什么程度,才可以达到能用实际数据分析。谢谢老师
作者回复: 算法原理和使用是两个维度,你们课上老师给你讲的算法肯定是从原理出发,到讲解论证的过程。 这个对你加深理解算法有帮助,但实际使用的时候,你就不用再关心这个论证的过程了,而需要关心:如何使用,结果如何 我建议你: 1)从实战项目出发,我会给专栏的读者制定一个“专属题库”,提升你的上手能力和成就感 2)在实战过程中,你也可以加深对Python使用和算法的理解。
6 - Yezhiwei2018-12-18希望能学到老师训练思维的方法
作者回复: 非常认同你说的,我们从小习惯“知识性”的教育,以考试为例。而国外更注重“思维性”的训练,会让你进行主动探索。 所以思维培养,一个很好的方法:就是主动分享,有一颗好奇心!
5 - React2018-12-17我想统计一下php职位某个范围薪资中招聘信息出现最多的关键词,可以通过专栏的学习得到解答吗
作者回复: 当然可以!包学包会,有问必答
5 - 姜戈2018-12-17之前一直在看推荐系统的内容,还没入门,就被各种算法搞得头大,浏览了课程安排,希望数据分析45讲让我对推荐系统的学习打下坚实基础.
作者回复: 其实实战是最好的学习,你可以在项目实战中体会这些算法,当然我也会给你讲解这些算法的原理。所以我安排了从“认知”=>“工具”=>“实战”的过程,并且会给你总结“思维导图”和“专属题库”帮你来巩固学习
5 - 🙄汤铭丰🙄2018-12-25你好~ 我从事数据分析也有一段时间了~ 现在的主要分析手段还是以hive sql为主,不知道如果当用python处理大体量的数据的时候一般是怎么操作呢?怎么把算法实现和落地到大数据里呢4
- upup2018-12-17思维和业务能画等号吗?我认为不懂业务只会工具和算法的不叫数据分析师,因为他没办法解释业务。有了数据思维能通用于任何行业吗?
作者回复: 同意你说的,我在后面也会讲到,想要用数据挖掘,第一步是对商业的理解,只有确定好了商业目标,数据挖掘才有目标。 数据思维是一种思考方式,世界本身有很多维度,我们从哪个维度看待它,就会从哪个维度收获它
4 - 孟令湛2018-12-17数据是无价的,希望通过学习,了解掌握数据分析挖掘的方法,并应用于工作生活里
作者回复: 有我在,你一定可以的!
4