19 | 深入理解迭代器和生成器
下载APP
关闭
渠道合作
推荐作者
19 | 深入理解迭代器和生成器
2019-06-21 景霄 来自北京
《Python核心技术与实战》
课程介绍
讲述:冯永吉
时长10:35大小8.48M
你好,我是景霄。
在第一次接触 Python 的时候,你可能写过类似 for i in [2, 3, 5, 7, 11, 13]: print(i) 这样的语句。for in 语句理解起来很直观形象,比起 C++ 和 java 早期的 for (int i = 0; i < n; i ++) printf("%d\n", a[i]) 这样的语句,不知道简洁清晰到哪里去了。
但是,你想过 Python 在处理 for in 语句的时候,具体发生了什么吗?什么样的对象可以被 for in 来枚举呢?
这一节课,我们深入到 Python 的容器类型实现底层去走走,了解一种叫做迭代器和生成器的东西。
你肯定用过的容器、可迭代对象和迭代器
容器这个概念非常好理解。我们说过,在 Python 中一切皆对象,对象的抽象就是类,而对象的集合就是容器。
列表(list: [0, 1, 2]),元组(tuple: (0, 1, 2)),字典(dict: {0:0, 1:1, 2:2}),集合(set: set([0, 1, 2]))都是容器。对于容器,你可以很直观地想象成多个元素在一起的单元;而不同容器的区别,正是在于内部数据结构的实现方法。然后,你就可以针对不同场景,选择不同时间和空间复杂度的容器。
所有的容器都是可迭代的(iterable)。这里的迭代,和枚举不完全一样。迭代可以想象成是你去买苹果,卖家并不告诉你他有多少库存。这样,每次你都需要告诉卖家,你要一个苹果,然后卖家采取行为:要么给你拿一个苹果;要么告诉你,苹果已经卖完了。你并不需要知道,卖家在仓库是怎么摆放苹果的。
严谨地说,迭代器(iterator)提供了一个 next 的方法。调用这个方法后,你要么得到这个容器的下一个对象,要么得到一个 StopIteration 的错误(苹果卖完了)。你不需要像列表一样指定元素的索引,因为字典和集合这样的容器并没有索引一说。比如,字典采用哈希表实现,那么你就只需要知道,next 函数可以不重复不遗漏地一个一个拿到所有元素即可。
而可迭代对象,通过 iter() 函数返回一个迭代器,再通过 next() 函数就可以实现遍历。for in 语句将这个过程隐式化,所以,你只需要知道它大概做了什么就行了。
我们来看下面这段代码,主要向你展示怎么判断一个对象是否可迭代。当然,这还有另一种做法,是 isinstance(obj, Iterable)。
通过这段代码,你就可以知道,给出的类型中,除了数字 1234 之外,其它的数据类型都是可迭代的。
生成器,又是什么?
据我所知,很多人对生成器这个概念会比较陌生,因为生成器在很多常用语言中,并没有相对应的模型。
这里,你只需要记着一点:生成器是懒人版本的迭代器。
我们知道,在迭代器中,如果我们想要枚举它的元素,这些元素需要事先生成。这里,我们先来看下面这个简单的样例。
声明一个迭代器很简单,[i for i in range(100000000)]就可以生成一个包含一亿元素的列表。每个元素在生成后都会保存到内存中,你通过代码可以看到,它们占用了巨量的内存,内存不够的话就会出现 OOM 错误。
不过,我们并不需要在内存中同时保存这么多东西,比如对元素求和,我们只需要知道每个元素在相加的那一刻是多少就行了,用完就可以扔掉了。
于是,生成器的概念应运而生,在你调用 next() 函数的时候,才会生成下一个变量。生成器在 Python 的写法是用小括号括起来,(i for i in range(100000000)),即初始化了一个生成器。
这样一来,你可以清晰地看到,生成器并不会像迭代器一样占用大量内存,只有在被使用的时候才会调用。而且生成器在初始化的时候,并不需要运行一次生成操作,相比于 test_iterator() ,test_generator() 函数节省了一次生成一亿个元素的过程,因此耗时明显比迭代器短。
到这里,你可能说,生成器不过如此嘛,我有的是钱,不就是多占一些内存和计算资源嘛,我多出点钱就是了呗。
哪怕你是土豪,请坐下先喝点茶,再听我继续讲完,这次,我们来实现一个自定义的生成器。
生成器,还能玩什么花样?
数学中有一个恒等式,(1 + 2 + 3 + ... + n)^2 = 1^3 + 2^3 + 3^3 + ... + n^3,想必你高中就应该学过它。现在,我们来验证一下这个公式的正确性。老规矩,先放代码,你先自己阅读一下,看不懂的也不要紧,接下来我再来详细讲解。
这段代码中,你首先注意一下 generator() 这个函数,它返回了一个生成器。
接下来的 yield 是魔术的关键。对于初学者来说,你可以理解为,函数运行到这一行的时候,程序会从这里暂停,然后跳出,不过跳到哪里呢?答案是 next() 函数。那么 i ** k 是干什么的呢?它其实成了 next() 函数的返回值。
这样,每次 next(gen) 函数被调用的时候,暂停的程序就又复活了,从 yield 这里向下继续执行;同时注意,局部变量 i 并没有被清除掉,而是会继续累加。我们可以看到 next_1 从 1 变到 8,next_3 从 1 变到 512。
聪明的你应该注意到了,这个生成器居然可以一直进行下去!没错,事实上,迭代器是一个有限集合,生成器则可以成为一个无限集。我只管调用 next(),生成器根据运算会自动生成新的元素,然后返回给你,非常便捷。
到这里,土豪同志应该也坐不住了吧,那么,还能再给力一点吗?
别急,我们再来看一个问题:给定一个 list 和一个指定数字,求这个数字在 list 中的位置。
下面这段代码你应该不陌生,也就是常规做法,枚举每个元素和它的 index,判断后加入 result,最后返回。
那么使用迭代器可以怎么做呢?二话不说,先看代码。
聪明的你应该看到了明显的区别,我就不做过多解释了。唯一需要强调的是, index_generator 会返回一个 Generator 对象,需要使用 list 转换为列表后,才能用 print 输出。
这里我再多说两句。在 Python 语言规范中,用更少、更清晰的代码实现相同功能,一直是被推崇的做法,因为这样能够很有效提高代码的可读性,减少出错概率,也方便别人快速准确理解你的意图。当然,要注意,这里“更少”的前提是清晰,而不是使用更多的魔术操作,虽说减少了代码却反而增加了阅读的难度。
回归正题。接下来我们再来看一个问题:给定两个序列,判定第一个是不是第二个的子序列。(LeetCode 链接如下:https://leetcode.com/problems/is-subsequence/ )
先来解读一下这个问题本身。序列就是列表,子序列则指的是,一个列表的元素在第二个列表中都按顺序出现,但是并不必挨在一起。举个例子,[1, 3, 5] 是 [1, 2, 3, 4, 5] 的子序列,[1, 4, 3] 则不是。
要解决这个问题,常规算法是贪心算法。我们维护两个指针指向两个列表的最开始,然后对第二个序列一路扫过去,如果某个数字和第一个指针指的一样,那么就把第一个指针前进一步。第一个指针移出第一个序列最后一个元素的时候,返回 True,否则返回 False。
不过,这个算法正常写的话,写下来怎么也得十行左右。
那么如果我们用迭代器和生成器呢?
这简短的几行代码,你是不是看得一头雾水,不知道发生了什么?
来,我们先把这段代码复杂化,然后一步步看。
首先,第二行的b = iter(b),把列表 b 转化成了一个迭代器,这里我先不解释为什么要这么做。
接下来的gen = (i for i in a)语句很好理解,产生一个生成器,这个生成器可以遍历对象 a,因此能够输出 1, 3, 5。而 (i in b)需要好好揣摩,这里你是不是能联想到 for in 语句?
没错,这里的(i in b),大致等价于下面这段代码:
这里非常巧妙地利用生成器的特性,next() 函数运行的时候,保存了当前的指针。比如再看下面这个示例:
至于最后的 all() 函数,就很简单了。它用来判断一个迭代器的元素是否全部为 True,如果是则返回 True,否则就返回 False.
于是到此,我们就很优雅地解决了这道面试题。不过你一定注意,面试的时候尽量不要用这种技巧,因为你的面试官有可能并不知道生成器的用法,他们也没有看过我的极客时间专栏。不过,在这个技术知识点上,在实际工作的应用上,你已经比很多人更加熟练了。继续加油!
总结
总结一下,今天我们讲了四种不同的对象,分别是容器、可迭代对象、迭代器和生成器。
容器是可迭代对象,可迭代对象调用 iter() 函数,可以得到一个迭代器。迭代器可以通过 next() 函数来得到下一个元素,从而支持遍历。
生成器是一种特殊的迭代器(注意这个逻辑关系反之不成立)。使用生成器,你可以写出来更加清晰的代码;合理使用生成器,可以降低内存占用、优化程序结构、提高程序速度。
生成器在 Python 2 的版本上,是协程的一种重要实现方式;而 Python 3.5 引入 async await 语法糖后,生成器实现协程的方式就已经落后了。我们会在下节课,继续深入讲解 Python 协程。
思考题
最后给你留一个思考题。对于一个有限元素的生成器,如果迭代完成后,继续调用 next() ,会发生什么呢?生成器可以遍历多次吗?
欢迎留言和我讨论,也欢迎你把这篇文章分享给你的同事、朋友,一起在交流中进步。
分享给需要的人,Ta购买本课程,你将得18元
生成海报并分享
赞 33
提建议
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
上一篇
18 | metaclass,是潘多拉魔盒还是阿拉丁神灯?
下一篇
20 | 揭秘 Python 协程
精选留言(101)
- Jingxiao置顶2019-06-23思考题答案: 很多同学的回复非常正确,生成器只能遍历一次,继续调用 next() 会 raise StopIteration。只有复位生成器才能重新进行遍历。共 4 条评论47
- John Si置顶2019-06-21我不知道如何把这技巧运用在编程中,老师能否举几个例子来说明一下呢?谢谢
作者回复: 例子已经在文中举了不少,对于如何娴熟地在编程中运用,这个需要长时间的积累,从阅读别人高质量的源代码,自己主动有意识地在自己的项目中思考,最后才会形成质变,内化成自己的能力,从而清楚地知道哪里应该用高级语法,高级工具,哪里应该简单的一笔带过。Python 的生成器无疑是最有用的特性,但也是最不广泛被使用的特性,这一章的目的,能够让你对生成器有基本的了解,下次在代码中遇到,能够说,“这个我知道,这个我懂!”便已足够。加油!
共 3 条评论38 - 时间小偷2019-06-21上一篇的分享mateclass写得看不懂,老师可否重新通俗写一下,分享嘉宾的风格跟老师不太一样啊共 2 条评论66
- TKbook2019-06-21def is_subsequence(a, b): b = iter(b) print(b) gen = (i for i in a) print(gen) for i in gen: print(i) gen = ((i in b) for i in a) print(gen) for i in gen: print(i) return all(((i in b) for i in a)) print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5])) print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5])) ########## 输出 ########## <list_iterator object at 0x000001E7063D0E80> <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C570> 1 3 5 <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C5E8> True True True False <list_iterator object at 0x000001E7063D0D30> <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C5E8> 1 4 3 <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C570> True True False False 为什么这里的print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5]))会返回False? 解释一下: 因为 gen = ((i in b) for i in a) print(gen) for i in gen: print(i) 这段代码的 for i in gen 已经b的迭代器消耗完,此时的b已经是个空的迭代器。所以,再执行all(((i in b) for i in a)),就是False了。展开
作者回复: 解释的很好
共 6 条评论51 - SCAR2019-06-21思考题:对于一个有限元素的生成器,如果迭代完成后,继续调用 next(),会跳出StopIteration:。生成器可以遍历多次吗?不行。也正是这个原因,老师代码复杂化那段代码,在 gen = ((i in b) for i in a) for i in gen: print(i) 之后应该是需要给b复位下,不然b会是空的,那么return回来永远会是False。 这段判断是否是子序列的指针用的真是巧妙,区区几行,精华尽现。展开
作者回复: 👍
30 - 恨你2019-11-15有错误的地方:list_1 = [i for i in range(100000000)]结果是一个可迭代对象,是一个列表,而不是一个迭代器。所以文中使用例子来说明的是生成器比列表节省内存,而不是迭代器比生成器节省内存。 from collections import Iterator from sys import getsizeof a = [i for i in range(1001)] print(type(a)) print(getsizeof(a))#4516 b = iter(a) print(type(b)) print(isinstance(b,Iterator)) print(getsizeof(b))#32 c = (i for i in range(1001)) print(getsizeof(b)) #32 这个例子可以说明生成器跟迭代器一样,都可以节省内存。请详细讲明可迭代对象,迭代器生成器的关系,重点说明迭代器与生成器的关系,生成器是特殊的迭代器,特殊之处不在于生成器能够节省内存。具体哪里特殊,个人还没有好的总结,只是浅显认为:生成器写法更优雅,可以使用send方法修改值 ,请老师深入研究下后讲给我们。谢谢。展开
编辑回复: 收到,我看看
共 8 条评论18 - tt2019-06-21明白为啥要把b转换成迭代器了,是为了下面的代码中可以用next(): while True: val = next(b) if val == i: yield True 这样才可以利用next()可以保存指针位置的特性,从而确保子序列中元素的顺序。展开
作者回复: 对,这里是个很巧妙的利用
共 2 条评论13 - kyle2019-06-21gen = ((i in b) for i in a) 实际上是先遍历 a,取出一个值赋给i,然后再判断i是否在b中,判断一次,b中的指针后移一位。 所以,第一轮的输出应该是:TRUE,TRUE,TRUE(前三个是for循环打印的,因为a中有3个元素),TRUE(最后一个是函数返回的); 第二轮输出是:TRUE,TRUE,FALSE,FALSE展开12
- farFlight2019-06-21迭代完成后,继续调用 next()会出现StopIteration。 生成器只能遍历一次,但是可以重新调用重新遍历。
作者回复: 正确
9 - xmr2019-06-29def is_subsequence(a, b): b = iter(b) print(b) gen = (i for i in a) print(gen) for i in gen: print(i) gen = ((i in b) for i in a) print(gen) for i in gen: print(i) return all(((i in b) for i in a)) print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5])) print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5])) 这个代码很容易让人误解,is_subsequence的返回结果永远是False的,因为迭代器b被用了两次了。展开7
- Lonely绿豆蛙2020-02-05比较下return 与 yield的区别: return:在程序函数中返回某个值,返回之后函数不在继续执行,彻底结束。 yield: 带有yield的函数是一个迭代器,函数返回某个值时,会停留在某个位置,返回函数值后,会在前面停留的位置继续执行,直到程序结束。
作者回复: 正确
共 2 条评论6 - 許敲敲2019-06-22b = (i for i in range(5)) print(2 in b) print(4 in b) print(3 in b) ########## 输出 ########## True True False 这里面的判断4 in b后,指针已经在3 之后了吗?所以 3 in b 会返回 false 反过来 如果 b = (i for i in range(5)) print(2 in b) print(3 in b) print(4 in b) ########## 输出 ########## True True True 这么理解对吗?展开共 1 条评论5
- Wing·三金2019-06-22思考题:其实开头就已经明示了答案,会出现 StopIteration Error。遍历是一次性,参考下面这段代码: def index_generator(L, target): for i, num in enumerate(L): if num == target: yield i result = index_generator([1, 6, 2, 4, 5, 23, 4, 54, 34, 3, 2], 2) print(list(result)) print(list(result)) ### output [2, 10] [] 补充一小点:上面的 isinstance(obj, Iterable) 中的 Iterable 需要先 from collections import Iterable。 另外有个问题,py3 中的 range() 本质上也是 generator 吗?如果是,为何下面这段代码的结果会是这样呢? e = range(3) for i in e: print(i) for i in e: print(i) ### expected 0 1 2 ### real output 0 1 2 0 1 2 请各位指教~!展开共 1 条评论4
- 蒋腾飞同学2019-09-23老师好 ,生成器(i for i in range(5))和tuple数据很像,都是可迭代的,请问有什么本质区别吗?都是小括号扩起来~3
- Geek_59f23e2019-06-221、大家对next函数可能有些误区,迭代完成后继续调用next函数会返回默认值None。 iterator.__next__() 方法和 next(iterator, default=None) 函数的区别在于:前者迭代完成后会抛出StopIteration错误,中断程序运行,而后者会返回一个默认值None(可以指定),不会报错和中断程序运行。 2、生成器遍历到最后一个元素后抛出StopIteration,不能遍历多次,重新遍历需要生成一个新的生成器。展开
作者回复: 👍
3 - Nemo2020-04-10%time test_iterator() %time test_generator() 这个%和time是啥意思?哪位大哥解释一下共 3 条评论2
- 单色2020-03-29生成器之前一直是一知半解,似懂非懂,今天学习后,有了更深入的了解。
作者回复: 👍
2 - 力维2020-02-19最后的例子的确比较有意思,个人理解有三个关键点: 一是(i in b)的含义 b = (i for i in range(5)) print(2 in b) print(4 in b) # 执行完后,b中剩下5了 print(3 in b) # 此时3 不在b中 二是,gen = ((i in b) for i in a) 先执行 for i in a ,把a中元素逐个取出;再执行 i in b ,判断是否在b中;最后把判断结果保存在生成器gen中 三是,return all(((i in b) for i in a)) 由于之前 i in b使得b到达StopIteration,再执行就是空集了 另外,第七段“集合(set: set([0, 1, 2]))都是容器。” 是否改为 set: {0,1,2}比较好?虽然都是同一个意思。展开
作者回复: 理解的很好。 大括号是很好很简洁的 set 初始化写法,这里用 set() 是为了更容易让读者明白具体类型。
2 - Element 静婷2019-06-25老师好,请问子序列的问题中,[1,3,5]不是[1, 2, 3, 4, 5]吗?怎么返回false共 1 条评论2
- Redevil2019-06-21前三个布尔值打印的是a的三个元素在不在b中的判断结果 第四个值是打印is_subsequence的最终返回值2