09 | 为什么 lua-resty-core 性能更高一些?
下载APP
关闭
渠道合作
推荐作者
09 | 为什么 lua-resty-core 性能更高一些?
2019-06-14 温铭 来自北京
《OpenResty从入门到实战》
课程介绍
讲述:温铭
时长11:28大小10.48M
你好,我是温铭。
前面两节课我们说了,Lua 是一种嵌入式开发语言,核心保持了短小精悍,你可以在 Redis、NGINX 中嵌入 Lua,来帮助你更灵活地完成业务逻辑。同时,Lua 也可以调用已有的 C 函数和数据结构,避免重复造轮子。
在 Lua 中,你可以用 Lua C API 来调用 C 函数,而在 LuaJIT 中还可以使用 FFI。对 OpenResty 而言:
在核心的 lua-nginx-module 中,调用 C 函数的 API,都是使用 Lua C API 来完成的;
而在 lua-resty-core 中,则是把 lua-nginx-module 已有的部分 API,使用 FFI 的模式重新实现了一遍。
看到这里你估计纳闷了:为什么要用 FFI 重新实现一遍?
Lua CFunction
我们先来看下, lua-nginx-module 中用 Lua C API 是如何实现的。我们在项目的代码中搜索 decode_base64,可以找到它的代码实现在 ngx_http_lua_string.c 中:
上面的代码看着就头大,不过还好,我们不用深究那两个 lua_ 开头的函数,以及它们参数的具体作用,只需要知道一点——这里注册了一个 CFunction:ngx_http_lua_ngx_decode_base64, 而它与 ngx.base64_decode 这个对外暴露的 API 是对应关系。
我们继续“按图索骥”,在这个 C 文件中搜索 ngx_http_lua_ngx_decode_base64,它定义在文件的开始位置:
对于那些能够被 Lua 调用的 C 函数来说,它的接口必须遵循 Lua 要求的形式,也就是 typedef int (*lua_CFunction)(lua_State* L)。它包含的参数是 lua_State 类型的指针 L ;它的返回值类型是一个整型,表示返回值的数量,而非返回值自身。
它的实现如下(这里我已经去掉了错误处理的代码):
这段代码中,最主要的是 ngx_base64_decoded_length 和 ngx_decode_base64, 它们都是 NGINX 自身提供的 C 函数。
我们知道,用 C 编写的函数,无法把返回值传给 Lua 代码,而是需要通过栈,来传递 Lua 和 C 之间的调用参数和返回值。这也是为什么,会有很多我们一眼无法看懂的代码。同时,这些代码也不能被 JIT 跟踪到,所以对于 LuaJIT 而言,这些操作是处于黑盒中的,没法进行优化。
LuaJIT FFI
而 FFI 则不同。FFI 的交互部分是用 Lua 实现的,这部分代码可以被 JIT 跟踪到,并进行优化;当然,代码也会更加简洁易懂。
你会发现,相比 CFunction,FFI 实现的代码清爽了很多,它具体的实现是 lua-nginx-module 仓库中的ngx_http_lua_ffi_decode_base64,如果你对这里感兴趣,可以自己去查看这个函数的实现,特别简单,这里我就不贴代码了。
不过,细心的你,是否从上面的代码片段中,发现函数命名的一些规律了呢?
没错,OpenResty 中的函数都是有命名规范的,你可以通过命名推测出它的用处。比如:
ngx_http_lua_ffi_ ,是用 FFI 来处理 NGINX HTTP 请求的 Lua 函数;
ngx_http_lua_ngx_ ,是用 Cfunction 来处理 NGINX HTTP 请求的 Lua 函数;
其他 ngx_ 和 lua_ 开头的函数,则分别属于 NGINX 和 Lua 的内置函数。
更进一步,OpenResty 中的 C 代码,也有着严格的代码规范,这里我推荐阅读官方的 C 代码风格指南。对于有意学习 OpenResty 的 C 代码并提交 PR 的开发者来说,这是必备的一篇文档。否则,即使你的 PR 写得再好,也会因为代码风格问题被反复评论并要求修改。
LuaJIT FFI GC
使用 FFI 的时候,我们可能会迷惑:在 FFI 中申请的内存,到底由谁来管理呢?是应该我们在 C 里面手动释放,还是 LuaJIT 自动回收呢?
这里有个简单的原则:LuaJIT 只负责由自己分配的资源;而 ffi.C 是 C 库的命名空间,所以,使用 ffi.C 分配的空间不由 LuaJIT 负责,需要你自己手动释放。
举个例子,比如你使用 ffi.C.malloc 申请了一块内存,那你就需要用配对的 ffi.C.free 来释放。LuaJIT 的官方文档中有一个对应的示例:
这段代码中,ffi.C.malloc(n) 申请了一段内存,同时 ffi.gc 就给它注册了一个析构的回调函数 ffi.C.free。这样一来,p 这个 cdata 在被 LuaJIT GC 的时候,就会自动调用 ffi.C.free,来释放 C 级别的内存。而 cdata 是由 LuaJIT 负责 GC 的 ,所以上述代码中的 p 会被 LuaJIT 自动释放。
这里要注意,如果你要在 OpenResty 中申请大块的内存,我更推荐你用 ffi.C.malloc 而不是 ffi.new。原因也很明显:
ffi.new 返回的是一个 cdata,这部分内存由 LuaJIT 管理;
LuaJIT GC 的管理内存是有上限的,OpenResty 中的 LuaJIT 并未开启 GC64 选项,所以单个 worker 内存的上限只有 2G。一旦超过 LuaJIT 的内存管理上限,就会导致报错。
在使用 FFI 的时候,我们还需要特别注意内存泄漏的问题。不过,凡人皆会犯错,只要是人写的代码,百密一疏,总会出现 bug。那么,有没有什么工具可以检测内存泄漏呢?
这时候,OpenResty 强大的周边测试和调试工具链就派上用场了。
我们先来说说测试。在 OpenResty 体系中,我们使用 Valgrind 来检测内存泄漏问题。
前面课程我们提到过的测试框架 test::nginx,有专门的内存泄漏检测模式去运行单元测试案例集,你只需要设置环境变量 TEST_NGINX_USE_VALGRIND=1 即可。OpenResty 的官方项目在发版本之前,都会在这个模式下完整回归,后面的测试章节中我们再详细介绍。
而 OpenResty 的 CLI resty 也有 --valgrind 选项,方便你单独运行某段 Lua 代码,即使你没有写测试案例也是没问题的。
再来看调试工具。
OpenResty 提供基于 systemtap 的扩展,来对 OpenResty 程序进行活体的动态分析。你可以在这个项目的工具集中,搜索 gc 这个关键字,会看到 lj-gc 和 lj-gc-objs 这两个工具。
这些调试工具的具体用法,我们会在后面的调试章节中详细介绍,你先有个印象即可。这样,你遇到内存问题就不会“病急乱投医“,毕竟 OpenResty 有专门的工具集,帮你定位和解决这些问题。
lua-resty-core
从上面的比较中,我们可以看到,FFI 的方式不仅代码更简洁,而且可以被 LuaJIT 优化,显然是更优的选择。其实现实也是如此,实际上,CFunction 的实现方式已经被 OpenResty 废弃,相关的实现也从代码库中移除了。现在新的 API,都通过 FFI 的方式,在 lua-resty-core 仓库中实现。
在 OpenResty 2019 年 5 月份发布的 1.15.8.1 版本前,lua-resty-core 默认是不开启的,而这不仅会带来性能损失,更严重的是会造成潜在的 bug。所以,我强烈推荐还在使用历史版本的用户,都手动开启 lua-resty-core。你只需要在 init_by_lua 阶段,增加一行代码就可以了:
当然,姗姗来迟的 1.15.8.1 版本中,已经增加了 lua_load_resty_core 指令,默认开启了 lua-resty-core。我个人感觉,OpenResty 对于 lua-resty-core 的开启还是过于谨慎了,开源项目应该尽早把类似的功能设置为默认开启。
lua-resty-core 中不仅重新实现了部分 lua-nginx-module 项目中的 API,比如 ngx.re.match、ngx.md5 等,还实现了不少新的 API,比如 ngx.ssl、ngx.base64、ngx.errlog、ngx.process、ngx.re.split、ngx.resp.add_header、ngx.balancer、ngx.semaphore 等等,我们在后面的 OpenResty API 章节中会介绍到。
写在最后
讲了这么多内容,最后我还是想说,FFI 虽然好,却也并不是性能银弹。它之所以高效,主要原因就是可以被 JIT 追踪并优化。如果你写的 Lua 代码不能被 JIT,而是需要在解释模式下执行,那么 FFI 的效率反而会更低。
那么到底有哪些操作可以被 JIT,哪些不能呢?怎样才可以避免写出不能被 JIT 的代码呢?下一节我来揭晓这个问题。
最后,给你留一个需要动手的作业题:你可以找一两个 lua-nginx-module 和 lua-resty-core 中都存在的 API,然后性能测试比较一下两者的差异吗?你可以看下 FFI 的性能提升到底有多大。
欢迎留言和我分享你的思考、收获,也欢迎你把这篇文章分享给你的同事、朋友,一起交流,一起进步。
分享给需要的人,Ta购买本课程,你将得18元
生成海报并分享
赞 7
提建议
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
上一篇
08 | LuaJIT分支和标准Lua有什么不同?
下一篇
10 | JIT编译器的死穴:为什么要避免使用 NYI ?
精选留言(11)
- 黑铁打野王2019-06-18nginx version: openresty/1.13.6.2 1. lua-nginx-module resty -e "local start = ngx.now(); for _ =1, 1000000000 do ngx.encode_base64('123456') end ngx.update_time(); ngx.say(ngx.now() - start)" 79.530000209808 2. lua-resty-core resty -e "require 'resty.core'; local start = ngx.now(); for _ =1, 1000000000 do ngx.encode_base64('123456') end ngx.update_time(); ngx.say(ngx.now() - start)" 8.944000005722 一个79.5s 一个8.9s展开
作者回复: 差不多 10 倍的性能差异
共 4 条评论15 - 微风吹了个吹2019-06-17温老师, 1.15.8的opnresty默认是开启GC64的,是不是可以理解为这里ffi.C.malloc与ffi.new就没啥区别了?官方的更新日志```change: we now enable the GC64 mode by default in our bundled LuaJIT build for x86_64 architectures; this can be disabled using --without-luajit-gc64. Thanks Thibault Charbonnier for the patch```
作者回复: 是的
共 2 条评论6 - HelloBug2019-06-15假设使用decode_base64函数,lua-resty-core不开启的时候,使用的函数就是lua-nginx-module中实现的,而开启的话就是使用lua-resty-core中实现的?
作者回复: 是的
6 - 英雄2019-06-15看不懂
作者回复: 知道 lua-resty-core 是使用 FFI 实现的 API 就行了,细节看不懂没有关系。
3 - 写点啥呢2019-08-29请问老师,ffi和cfunction的性能差异是不是主要是有LuaJIT的实时编译优化带来的?除此之外还有哪些因素导致了这两者之间的性能差异呢?
作者回复: 主要是这个原因
共 2 条评论1 - helloworld2019-06-14老师,lua-resty-core和lua-nginx-module各自都有哪些API,怎么查呢
作者回复: 要分别查看这两个仓库的文档了
1 - Geek_e553fa2019-06-14沙发。希望多点实例。还有讲讲全局变量申请使用的一些替代方案。不是否定了不给解决办法
作者回复: 可以使用模块中的 top level 局部变量来替代,这个后面会提到。 在 OpenResty 中所有变量都要加 local。
1 - Leon📷2019-07-02跨语言调用的话,函数调用返回都是通过函数栈来传递嘛,比如go调用C,是不是有点主题无关哈,希望老师解答下1
- 旺旺2019-06-19我是1.15.8.1版本的,用了前面同学给的代码,跑起来,时间相差很少,一个38.133000135422秒,一个37.325000047684秒。这是为啥?
作者回复: 因为从1.15.8.1版本开始,默认开了 lua-resty-core
共 3 条评论 - HelloBug2019-06-15如何理解FFI的交互部分是用lua实现的,这部分代码可以被JIT跟踪到? LuaCFuncion:ngx_http_lua_ngx_decode_base64整个函数都不能被JIT追踪到,而函数ngx.decode_base64可以被JIT追踪到,只有里面的函数C.ngx_http_lua_ffi_decode_base不能被追踪到是吗?也就是C.ngx_http_lua_ffi_decode_base函数可以被JIT编译优化?
作者回复: LuaJIT 是运行 Lua 代码的,自然只能 JIT 它其中的 Lua 代码,CFunction 的自然无能为力。
共 2 条评论1 - 一步2019-06-14这个不太了解,openresty 工作中要的少,还没上手的,不知道怎么去比较性能