23丨索引的概览:用还是不用索引,这是一个问题
下载APP
关闭
渠道合作
推荐作者
23丨索引的概览:用还是不用索引,这是一个问题
2019-08-02 陈旸 来自北京
《SQL必知必会》
课程介绍
讲述:陈旸
时长11:01大小10.10M
提起优化 SQL,你可能会把它理解为优化索引。简单来说这也不算错,索引在 SQL 优化中占了很大的比重。索引用得好,可以将 SQL 查询的效率提升 10 倍甚至更多。但索引是万能的吗?既然索引可以提升效率,只要创建索引不就好了吗?实际上,在有些情况下,创建索引反而会降低效率。
今天我们就来讲一下索引,索引涉及到的内容比较多,今天先来对索引有个整体的认知。
什么情况下创建索引,什么时候不需要索引?
索引的种类有哪些?
索引的原理很好理解,在今天的内容里,我依然会通过 SQL 查询实验验证今天的内容,帮你进一步加深理解。
索引是万能的吗?
首先我们需要了解什么是索引(Index)。数据库中的索引,就好比一本书的目录,它可以帮我们快速进行特定值的定位与查找,从而加快数据查询的效率。
索引就是帮助数据库管理系统高效获取数据的数据结构。
如果我们不使用索引,就必须从第 1 条记录开始扫描,直到把所有的数据表都扫描完,才能找到想要的数据。既然如此,如果我们想要快速查找数据,就只需要创建更多的索引就好了呢?
其实索引不是万能的,在有些情况下使用索引反而会让效率变低。
索引的价值是帮我们从海量数据中找到想要的数据,如果数据量少,那么是否使用索引对结果的影响并不大。
在数据表中的数据行数比较少的情况下,比如不到 1000 行,是不需要创建索引的。另外,当数据重复度大,比如高于 10% 的时候,也不需要对这个字段使用索引。我之前讲到过,如果是性别这个字段,就不需要对它创建索引。这是为什么呢?如果你想要在 100 万行数据中查找其中的 50 万行(比如性别为男的数据),一旦创建了索引,你需要先访问 50 万次索引,然后再访问 50 万次数据表,这样加起来的开销比不使用索引可能还要大。
当然,空口无凭,我们来做两个实验,更直观地了解索引。
实验 1:数据行数少的情况下,索引效率如何
在第一个数据表中,除了自增的 id 以外没有建立额外的索引。第二张数据表中,我对 name 字段建立了唯一索引。
heros 数据表一共有 69 个英雄,数据量很少。当我们对 name 进行条件查询的时候,我们观察一下创建索引前后的效率。
运行结果(1 条数据,运行时间 0.072s):
我对 name 字段建立索引后,再进行查询:
运行结果(1 条数据,运行时间 0.080s):
你能看到运行结果相同,但是创建了 name 字段索引的效率比没有创建索引时效率更低。在数据量不大的情况下,索引就发挥不出作用了。
实验 2:性别(男或女)字段真的不应该创建索引吗?
如果一个字段的取值少,比如性别这个字段,通常是不需要创建索引的。那么有没有特殊的情况呢?
下面我们来看一个例子,假设有一个女儿国,人口总数为 100 万人,男性只有 10 个人,也就是占总人口的 10 万分之 1。
女儿国的人口数据表 user_gender 见百度网盘中的 user_gender.sql。其中数据表中的 user_gender 字段取值为 0 或 1,0 代表女性,1 代表男性。
如果我们要筛选出这个国家中的男性,可以使用:
运行结果(10 条数据,运行时间 0.696s):
你能看到在未创建索引的情况下,运行的效率并不高。如果我们针对 user_gender 字段创建索引呢?
同样是 10 条数据,运行结果相同,时间却缩短到了 0.052s,大幅提升了查询的效率。
其实通过这两个实验你也能看出来,索引的价值是帮你快速定位。如果想要定位的数据有很多,那么索引就失去了它的使用价值,比如通常情况下的性别字段。不过有时候,我们还要考虑这个字段中的数值分布的情况,在实验 2 中,性别字段的数值分布非常特殊,男性的比例非常少。
我们不仅要看字段中的数值个数,还要根据数值的分布情况来考虑是否需要创建索引。
索引的种类有哪些?
虽然使用索引的本质目的是帮我们快速定位想要查找的数据,但实际上,索引有很多种类。
从功能逻辑上说,索引主要有 4 种,分别是普通索引、唯一索引、主键索引和全文索引。
普通索引是基础的索引,没有任何约束,主要用于提高查询效率。唯一索引就是在普通索引的基础上增加了数据唯一性的约束,在一张数据表里可以有多个唯一索引。主键索引在唯一索引的基础上增加了不为空的约束,也就是 NOT NULL+UNIQUE,一张表里最多只有一个主键索引。全文索引用的不多,MySQL 自带的全文索引只支持英文。我们通常可以采用专门的全文搜索引擎,比如 ES(ElasticSearch) 和 Solr。
其实前三种索引(普通索引、唯一索引和主键索引)都是一类索引,只不过对数据的约束性逐渐提升。在一张数据表中只能有一个主键索引,这是由主键索引的物理实现方式决定的,因为数据存储在文件中只能按照一种顺序进行存储。但可以有多个普通索引或者多个唯一索引。
按照物理实现方式,索引可以分为 2 种:聚集索引和非聚集索引。我们也把非聚集索引称为二级索引或者辅助索引。
聚集索引可以按照主键来排序存储数据,这样在查找行的时候非常有效。举个例子,如果是一本汉语字典,我们想要查找“数”这个字,直接在书中找汉语拼音的位置即可,也就是拼音“shu”。这样找到了索引的位置,在它后面就是我们想要找的数据行。
非聚集索引又是什么呢?
在数据库系统会有单独的存储空间存放非聚集索引,这些索引项是按照顺序存储的,但索引项指向的内容是随机存储的。也就是说系统会进行两次查找,第一次先找到索引,第二次找到索引对应的位置取出数据行。非聚集索引不会把索引指向的内容像聚集索引一样直接放到索引的后面,而是维护单独的索引表(只维护索引,不维护索引指向的数据),为数据检索提供方便。我们还以汉语字典为例,如果想要查找“数”字,那么按照部首查找的方式,先找到“数”字的偏旁部首,然后这个目录会告诉我们“数”字存放到第多少页,我们再去指定的页码找这个字。
聚集索引指表中数据行按索引的排序方式进行存储,对查找行很有效。只有当表包含聚集索引时,表内的数据行才会按找索引列的值在磁盘上进行物理排序和存储。每一个表只能有一个聚集索引,因为数据行本身只能按一个顺序存储。
聚集索引与非聚集索引的原理不同,在使用上也有一些区别:
聚集索引的叶子节点存储的就是我们的数据记录,非聚集索引的叶子节点存储的是数据位置。非聚集索引不会影响数据表的物理存储顺序。
一个表只能有一个聚集索引,因为只能有一种排序存储的方式,但可以有多个非聚集索引,也就是多个索引目录提供数据检索。
使用聚集索引的时候,数据的查询效率高,但如果对数据进行插入,删除,更新等操作,效率会比非聚集索引低。
实验 3:使用聚集索引和非聚集索引的查询效率
还是针对刚才的 user_gender 数据表,我们来看下使用聚集索引和非聚集索引的查询效率有什么区别。在 user_gender 表中,我设置了 user_id 为主键,也就是聚集索引的字段是 user_id。这里我们查询下 user_id=90001 的用户信息:
运行结果(1 条数据,运行时间 0.043s):
我们再直接对 user_name 字段进行条件查询,此时 user_name 字段没有创建索引:
运行结果(1 条数据,运行时间 0.961s):
你能看出对没有建立索引的字段进行条件查询,查询效率明显降低了。
然后我们对 user_name 字段创建普通索引,进行 SQL 查询:
运行结果(1 条数据,运行时间 0.050s):
通过对这 3 次 SQL 查询结果的对比,我们可以总结出以下两点内容:
对 WHERE 子句的字段建立索引,可以大幅提升查询效率。
采用聚集索引进行数据查询,比使用非聚集索引的查询效率略高。如果查询次数比较多,还是尽量使用主键索引进行数据查询。
除了业务逻辑和物理实现方式,索引还可以按照字段个数进行划分,分成单一索引和联合索引。
索引列为一列时为单一索引;多个列组合在一起创建的索引叫做联合索引。
创建联合索引时,我们需要注意创建时的顺序问题,因为联合索引 (x, y, z) 和 (z, y, x) 在使用的时候效率可能会存在差别。
这里需要说明的是联合索引存在最左匹配原则,也就是按照最左优先的方式进行索引的匹配。比如刚才举例的 (x, y, z),如果查询条件是 WHERE x=1 AND y=2 AND z=3,就可以匹配上联合索引;如果查询条件是 WHERE y=2,就无法匹配上联合索引。
实验 4:联合索引的最左原则
还是针对 user_gender 数据表,我们把 user_id 和 user_name 字段设置为联合主键,然后看下 SQL 查询效率有什么区别。
运行结果(1 条数据,运行时间 0.046s):
运行结果(1 条数据,运行时间 0.046s):
我们再来看下普通的条件查询是什么样子的:
运行结果(1 条数据,运行时间 0.943s):
你能看到当我们使用了联合索引 (user_id, user_name) 的时候,在 WHERE 子句中对联合索引中的字段 user_id 和 user_name 进行条件查询,或者只对 user_id 进行查询,效率基本上是一样的。当我们对 user_name 进行条件查询时,效率就会降低很多,这是因为根据联合索引的最左原则,user_id 在 user_name 的左侧,如果没有使用 user_id,而是直接使用 user_name 进行条件查询,联合索引就会失效。
总结
使用索引可以帮助我们从海量的数据中快速定位想要查找的数据,不过索引也存在一些不足,比如占用存储空间、降低数据库写操作的性能等,如果有多个索引还会增加索引选择的时间。当我们使用索引时,需要平衡索引的利(提升查询效率)和弊(维护索引所需的代价)。
在实际工作中,我们还需要基于需求和数据本身的分布情况来确定是否使用索引,尽管索引不是万能的,但数据量大的时候不使用索引是不可想象的,毕竟索引的本质,是帮助我们提升数据检索的效率。
今天的内容到这里就结束了,给你留个问题。关于联合索引的最左原则指的是什么?在使用联合索引时,有哪些需要注意的地方呢?
欢迎你在评论区写下你的答案,也欢迎把这篇文章分享给你的朋友或者同事,一起交流一下。
分享给需要的人,Ta购买本课程,你将得20元
生成海报并分享
赞 17
提建议
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
上一篇
22丨反范式设计:3NF有什么不足,为什么有时候需要反范式设计?
下一篇
24丨索引的原理:我们为什么用B+树来做索引?
精选留言(43)
- DZ2019-08-03联合索引的最左原则就是说,索引是一种顺序结构,我们按照什么顺序创建索引,就只能按照这个顺序使用索引,这容易理解。 假设我们有X、Y、Z三个字段,创建联合索引(X, Y, Z),可以理解成,数据库按照不同的权重排列了XYZ,形成了一个新值。 如果把X、Y、Z分别类别成“百分位”、“十分位”和“个位”,则新值XYZ依次排列在索引上。 查询“X=9 AND Y=8 AND Z=7”的过程,就是在一个由小到大排列的数值序列中寻找“987”,可以很快找到。 查询“Y=8 AND Z=7”,就用不上索引了,因为可能存在187、287、387、487...,这样就必须扫描所有数值。 查询“Z=7 AND Y=8 AND X=9”,看上去所有字段都用上了,也可以按照百分位、十分位和个数的逻辑去利用索引,但SQL不会自动识别出联合索引顺序与联合查询的顺序,它会严格地按照字面顺序去套用索引,只要不匹配,就不用。 综上,使用联合索引的时候,字段顺序不能乱,查询字段可以少,但只能从右侧开始减少,不能从左侧。 这就像按顺序查数值,先找高位再找低位(索引扫描),如果先找十分位或者先找个位,那就只能每个数值都看一下(全扫描)。展开
作者回复: 这个比喻解释的很形象,另外在这个基础上还需要说明下: 1)SQL条件语句中的字段顺序不重要,因为在逻辑查询优化阶段会自动进行 查询重写。 2)如果我们遇到了范围条件查询,比如<、<=、>、>=、between等。那么范围列后的列就无法使用到索引
共 10 条评论61 - 峻铭2019-09-10使用聚集索引的时候,数据的查询效率高,但如果对数据进行插入,删除,更新等操作,效率会比非聚集索引低。对这句话我不明白,为什么插入、删除、更新等操作,效率会比非聚集索引低,这三个操作内部都是先进行了查询的,聚集索引属于存储结构的物理索引,查询效率高,自然插入、删除、更新的效率也高啊。实在不解
作者回复: 聚集索引是面向读取的设计,因为我们的数据会按照聚集索引的大小顺序写入到磁盘,因此聚集索引会存在存储顺序的问题。而我们更新,插入的内容往往都是随机的,这时如果我们还是用聚集索引,所有的记录就需要重新进行排序并重新写入到磁盘中,所以效率相比于非聚集索引可能会降低。 而非聚集索引只是存储索引,我们只需要更新这个索引即可,不需要对所有的记录重新排序。
共 6 条评论21 - Fargo2019-08-09老师没讲如何创建索引,可以参考https://www.runoob.com/mysql/mysql-index.html
作者回复: 多谢分享
共 2 条评论18 - 骑行的掌柜J2020-04-24发现陈老师没有细讲关于如何把百万条数据导入MySQL的方法,虽然评论里有朋友提了,陈老师也回答说用存储过程,但是掌柜查了还有其他方法,所以这里做了个汇总:https://blog.csdn.net/weixin_41013322/article/details/105658594 希望对大家有帮助共 3 条评论12
- Elliot2019-09-13一旦创建了索引,你需要先访问 50 万次索引,然后再访问 5... 这句话还是不太理解,可以再详细解释一下吗?非常感谢
作者回复: 因为二级索引(辅助索引)并不存储我们想要SELECT的具体数据,因此是通过二级索引想找到主键,然后再通过主键找到具体的数据。这种方式也称之为回表,是因为索引没有对SELECT查询的字段进行完全覆盖。
共 4 条评论8 - 许童童2019-08-02使用联合索引时,如果可以使用索引覆盖,那就不用回表,查询性能更好了。
作者回复: 是的
共 4 条评论6 - 梁2019-11-19“当数据重复度大,比如高于 10% 的时候,也不需要对这个字段使用索引。”,文中还举例到了“性别”字段,这类数据重复度大,不正好适合位图索引吗?
作者回复: 对 位图索引适合
4 - 未来的胡先森2019-08-14计算机实际是对现实生活的一个抽象,正如索引来自于生活中的字典。
作者回复: 索引比喻的不错,计算机算是运用数学工具,帮我们自动化解决问题
4 - 阿锋2019-08-02普通索引、唯一索引、主键索引和全文索引,它们对应聚集索引还是非聚集索引?共 2 条评论4
- Z.CC2019-09-10100万条数据是怎么插入的。。。
作者回复: 我写的存储过程插入的…
共 2 条评论3 - 爱思考的仙人球2019-10-20在性别这类重复度高的字段上,oracle可以创建位图索引
作者回复: 对 bitmap是不错的方式
2 - Monday2019-08-11百度网盘下载真慢,另外请老师提供一个存储过程插入用户表。
作者回复: 大数据量插入的存储过程,我在专栏里应该有写
共 2 条评论2 - 黄卫江2021-05-14最左原则是说:如果联合索引的最左边的字段没有进入查询条件中那索引就无法发挥作用1
- Black2020-07-31我在有索引的表和没索引的表,查询都是0.001秒。。。。。是不是默认有优化啊共 1 条评论1
- 雪飞鸿2019-09-17为什么是最左匹配而不是最右匹配
作者回复: 从左到右的顺序
共 2 条评论1 - 捞鱼的搬砖奇2019-08-02sql能同时提供到github上吗1
- 上善若水2023-01-09 来自河南聚集索引就是数据的物理存储按照顺序排序,非聚集索引一条数据对应以后索引指向。聚集索引修改可能需要重新排序,查询效率高,修改删除效率低一些。
- 扭断翅膀的猪2021-07-28举的性别不需要建立索引,太片面了。如果我就要取性别信息数量统计不需要回表操作,难道数据各占一半我就不需要建立索引?简直糟糕的栗子。
- 素衣绾绾2020-09-03最左原则有点像Java中的短路与运算符,但又不完全是的,例如:if(xxx != null && xxx != null),如果最左边的一个条件就不符合,那么后面的就不用看了,直接pass,如果左边的匹配,才会去看右边的条件,这一点是相似的,联合索引必须在左边的字段是与where 后面的查询条件是匹配的。
- Geek_bbbef12020-07-16实验二中,对 user_gender 加了 btree 索引后,查找 user_gender = 1 由 0.28 秒提升到了 0.033秒,但是查找 user_gender = 0,由 1.4 秒降低到了 2.28 秒。所以说应该是要看实际使用来权衡吧。