你好,我是盛延敏,今天是网络编程实战性能篇的答疑模块,欢迎回来。
在性能篇中,我主要围绕 C10K 问题进行了深入剖析,最后引出了事件分发机制和多线程。可以说,基于 epoll 的事件分发能力,是 Linux 下高性能网络编程的不二之选。如果你觉得还不过瘾,期望有更深刻的认识和理解,那么在性能篇的答疑中,我就带你一起梳理一下 epoll 的源代码,从中我们一定可以有更多的发现和领悟。
今天的代码有些多,建议你配合文稿收听音频。
基本数据结构
在开始研究源代码之前,我们先看一下 epoll 中使用的数据结构,分别是 eventpoll、epitem 和 eppoll_entry。
我们先看一下 eventpoll 这个数据结构,这个数据结构是我们在调用 epoll_create 之后内核侧创建的一个句柄,表示了一个 epoll 实例。后续如果我们再调用 epoll_ctl 和 epoll_wait 等,都是对这个 eventpoll 数据进行操作,这部分数据会被保存在 epoll_create 创建的匿名文件 file 的 private_data 字段中。
* This structure is stored inside the "private_data" member of the file
* structure and represents the main data structure for the eventpoll
* interface.
*/
struct eventpoll {
spinlock_t lock;
* This mutex is used to ensure that files are not removed
* while epoll is using them. This is held during the event
* collection loop, the file cleanup path, the epoll file exit
* code and the ctl operations.
*/
struct mutex mtx;
wait_queue_head_t wq;
wait_queue_head_t poll_wait;
struct list_head rdllist;
struct rb_root_cached rbr;
* This is a single linked list that chains all the "struct epitem" that
* happened while transferring ready events to userspace w/out
* holding ->lock.
*/
struct epitem *ovflist;
struct wakeup_source *ws;
struct user_struct *user;
struct file *file;
int visited;
struct list_head visited_list_link;
#ifdef CONFIG_NET_RX_BUSY_POLL
unsigned int napi_id;
#endif
};
你能看到在代码中我提到了 epitem,这个 epitem 结构是干什么用的呢?
每当我们调用 epoll_ctl 增加一个 fd 时,内核就会为我们创建出一个 epitem 实例,并且把这个实例作为红黑树的一个子节点,增加到 eventpoll 结构体中的红黑树中,对应的字段是 rbr。这之后,查找每一个 fd 上是否有事件发生都是通过红黑树上的 epitem 来操作。
* Each file descriptor added to the eventpoll interface will
* have an entry of this type linked to the "rbr" RB tree.
* Avoid increasing the size of this struct, there can be many thousands
* of these on a server and we do not want this to take another cache line.
*/
struct epitem {
union {
struct rb_node rbn;
struct rcu_head rcu;
};
struct list_head rdllink;
* Works together "struct eventpoll"->ovflist in keeping the
* single linked chain of items.
*/
struct epitem *next;
struct epoll_filefd ffd;
int nwait;
struct list_head pwqlist;
struct eventpoll *ep;
struct list_head fllink;
struct wakeup_source __rcu *ws;
struct epoll_event event;
};
每次当一个 fd 关联到一个 epoll 实例,就会有一个 eppoll_entry 产生。eppoll_entry 的结构如下:
struct eppoll_entry {
struct list_head llink;
struct epitem *base;
* Wait queue item that will be linked to the target file wait
* queue head.
*/
wait_queue_entry_t wait;
wait_queue_head_t *whead;
};
epoll_create
我们在使用 epoll 的时候,首先会调用 epoll_create 来创建一个 epoll 实例。这个函数是如何工作的呢?
首先,epoll_create 会对传入的 flags 参数做简单的验证。
BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
if (flags & ~EPOLL_CLOEXEC)
return -EINVAL;
接下来,内核申请分配 eventpoll 需要的内存空间。
*/
error = ep_alloc(&ep);
if (error < 0)
return error;
在接下来,epoll_create 为 epoll 实例分配了匿名文件和文件描述字,其中 fd 是文件描述字,file 是一个匿名文件。这里充分体现了 UNIX 下一切都是文件的思想。注意,eventpoll 的实例会保存一份匿名文件的引用,通过调用 fd_install 函数将匿名文件和文件描述字完成了绑定。
这里还有一个特别需要注意的地方,在调用 anon_inode_get_file 的时候,epoll_create 将 eventpoll 作为匿名文件 file 的 private_data 保存了起来,这样,在之后通过 epoll 实例的文件描述字来查找时,就可以快速地定位到 eventpoll 对象了。
最后,这个文件描述字作为 epoll 的文件句柄,被返回给 epoll_create 的调用者。
* Creates all the items needed to setup an eventpoll file. That is,
* a file structure and a free file descriptor.
*/
fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
if (fd < 0) {
error = fd;
goto out_free_ep;
}
file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
O_RDWR | (flags & O_CLOEXEC));
if (IS_ERR(file)) {
error = PTR_ERR(file);
goto out_free_fd;
}
ep->file = file;
fd_install(fd, file);
return fd;
epoll_ctl
接下来,我们看一下一个套接字是如何被添加到 epoll 实例中的。这就要解析一下 epoll_ctl 函数实现了。
查找 epoll 实例
首先,epoll_ctl 函数通过 epoll 实例句柄来获得对应的匿名文件,这一点很好理解,UNIX 下一切都是文件,epoll 的实例也是一个匿名文件。
f = fdget(epfd);
if (!f.file)
goto error_return;
接下来,获得添加的套接字对应的文件,这里 tf 表示的是 target file,即待处理的目标文件。
tf = fdget(fd);
if (!tf.file)
goto error_fput;
再接下来,进行了一系列的数据验证,以保证用户传入的参数是合法的,比如 epfd 真的是一个 epoll 实例句柄,而不是一个普通文件描述符。
error = -EPERM;
if (!tf.file->f_op->poll)
goto error_tgt_fput;
...
如果获得了一个真正的 epoll 实例句柄,就可以通过 private_data 获取之前创建的 eventpoll 实例了。
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
ep = f.file->private_data;
红黑树查找
接下来 epoll_ctl 通过目标文件和对应描述字,在红黑树中查找是否存在该套接字,这也是 epoll 为什么高效的地方。红黑树(RB-tree)是一种常见的数据结构,这里 eventpoll 通过红黑树跟踪了当前监听的所有文件描述字,而这棵树的根就保存在 eventpoll 数据结构中。
struct rb_root_cached rbr;
对于每个被监听的文件描述字,都有一个对应的 epitem 与之对应,epitem 作为红黑树中的节点就保存在红黑树中。
* Try to lookup the file inside our RB tree, Since we grabbed "mtx"
* above, we can be sure to be able to use the item looked up by
* ep_find() till we release the mutex.
*/
epi = ep_find(ep, tf.file, fd);
红黑树是一棵二叉树,作为二叉树上的节点,epitem 必须提供比较能力,以便可以按大小顺序构建出一棵有序的二叉树。其排序能力是依靠 epoll_filefd 结构体来完成的,epoll_filefd 可以简单理解为需要监听的文件描述字,它对应到二叉树上的节点。
可以看到这个还是比较好理解的,按照文件的地址大小排序。如果两个相同,就按照文件文件描述字来排序。
struct epoll_filefd {
struct file *file;
int fd;
} __packed;
static inline int ep_cmp_ffd(struct epoll_filefd *p1,
struct epoll_filefd *p2)
{
return (p1->file > p2->file ? +1:
(p1->file < p2->file ? -1 : p1->fd - p2->fd));
}
在进行完红黑树查找之后,如果发现是一个 ADD 操作,并且在树中没有找到对应的二叉树节点,就会调用 ep_insert 进行二叉树节点的增加。
case EPOLL_CTL_ADD:
if (!epi) {
epds.events |= POLLERR | POLLHUP;
error = ep_insert(ep, &epds, tf.file, fd, full_check);
} else
error = -EEXIST;
if (full_check)
clear_tfile_check_list();
break;
ep_insert
ep_insert 首先判断当前监控的文件值是否超过了 /proc/sys/fs/epoll/max_user_watches 的预设最大值,如果超过了则直接返回错误。
user_watches = atomic_long_read(&ep->user->epoll_watches);
if (unlikely(user_watches >= max_user_watches))
return -ENOSPC;
接下来是分配资源和初始化动作。
if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
return -ENOMEM;
INIT_LIST_HEAD(&epi->rdllink);
INIT_LIST_HEAD(&epi->fllink);
INIT_LIST_HEAD(&epi->pwqlist);
epi->ep = ep;
ep_set_ffd(&epi->ffd, tfile, fd);
epi->event = *event;
epi->nwait = 0;
epi->next = EP_UNACTIVE_PTR;
再接下来的事情非常重要,ep_insert 会为加入的每个文件描述字设置回调函数。这个回调函数是通过函数 ep_ptable_queue_proc 来进行设置的。这个回调函数是干什么的呢?其实,对应的文件描述字上如果有事件发生,就会调用这个函数,比如套接字缓冲区有数据了,就会回调这个函数。这个函数就是 ep_poll_callback。这里你会发现,原来内核设计也是充满了事件回调的原理。
* This is the callback that is used to add our wait queue to the
* target file wakeup lists.
*/
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,poll_table *pt)
{
struct epitem *epi = ep_item_from_epqueue(pt);
struct eppoll_entry *pwq;
if (epi>nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
pwq->whead = whead;
pwq->base = epi;
if (epi->event.events & EPOLLEXCLUSIVE)
add_wait_queue_exclusive(whead, &pwq->wait);
else
add_wait_queue(whead, &pwq->wait);
list_add_tail(&pwq->llink, &epi->pwqlist);
epi->nwait++;
} else {
epi->nwait = -1;
}
}
ep_poll_callback
ep_poll_callback 函数的作用非常重要,它将内核事件真正地和 epoll 对象联系了起来。它又是怎么实现的呢?
首先,通过这个文件的 wait_queue_entry_t 对象找到对应的 epitem 对象,因为 eppoll_entry 对象里保存了 wait_queue_entry_t,根据 wait_queue_entry_t 这个对象的地址就可以简单计算出 eppoll_entry 对象的地址,从而可以获得 epitem 对象的地址。这部分工作在 ep_item_from_wait 函数中完成。一旦获得 epitem 对象,就可以寻迹找到 eventpoll 实例。
* This is the callback that is passed to the wait queue wakeup
* mechanism. It is called by the stored file descriptors when they
* have events to report.
*/
static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
{
int pwake = 0;
unsigned long flags;
struct epitem *epi = ep_item_from_wait(wait);
struct eventpoll *ep = epi->ep;
接下来,进行一个加锁操作。
spin_lock_irqsave(&ep->lock, flags);
下面对发生的事件进行过滤,为什么需要过滤呢?为了性能考虑,ep_insert 向对应监控文件注册的是所有的事件,而实际用户侧订阅的事件未必和内核事件对应。比如,用户向内核订阅了一个套接字的可读事件,在某个时刻套接字的可写事件发生时,并不需要向用户空间传递这个事件。
* Check the events coming with the callback. At this stage, not
* every device reports the events in the "key" parameter of the
* callback. We need to be able to handle both cases here, hence the
* test for "key" != NULL before the event match test.
*/
if (key && !((unsigned long) key & epi->event.events))
goto out_unlock;
接下来,判断是否需要把该事件传递给用户空间。
if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
if (epi->next == EP_UNACTIVE_PTR) {
epi->next = ep->ovflist;
ep->ovflist = epi;
if (epi->ws) {
* Activate ep->ws since epi->ws may get
* deactivated at any time.
*/
__pm_stay_awake(ep->ws);
}
}
goto out_unlock;
}
如果需要,而且该事件对应的 event_item 不在 eventpoll 对应的已完成队列中,就把它放入该队列,以便将该事件传递给用户空间。
if (!ep_is_linked(&epi->rdllink)) {
list_add_tail(&epi->rdllink, &ep->rdllist);
ep_pm_stay_awake_rcu(epi);
}
我们知道,当我们调用 epoll_wait 的时候,调用进程被挂起,在内核看来调用进程陷入休眠。如果该 epoll 实例上对应描述字有事件发生,这个休眠进程应该被唤醒,以便及时处理事件。下面的代码就是起这个作用的,wake_up_locked 函数唤醒当前 eventpoll 上的等待进程。
* Wake up ( if active ) both the eventpoll wait list and the ->poll()
* wait list.
*/
if (waitqueue_active(&ep->wq)) {
if ((epi->event.events & EPOLLEXCLUSIVE) &&
!((unsigned long)key & POLLFREE)) {
switch ((unsigned long)key & EPOLLINOUT_BITS) {
case POLLIN:
if (epi->event.events & POLLIN)
ewake = 1;
break;
case POLLOUT:
if (epi->event.events & POLLOUT)
ewake = 1;
break;
case 0:
ewake = 1;
break;
}
}
wake_up_locked(&ep->wq);
}
查找 epoll 实例
epoll_wait 函数首先进行一系列的检查,例如传入的 maxevents 应该大于 0。
if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
return -EINVAL;
if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
return -EFAULT;
和前面介绍的 epoll_ctl 一样,通过 epoll 实例找到对应的匿名文件和描述字,并且进行检查和验证。
f = fdget(epfd);
if (!f.file)
return -EBADF;
* We have to check that the file structure underneath the fd
* the user passed to us _is_ an eventpoll file.
*/
error = -EINVAL;
if (!is_file_epoll(f.file))
goto error_fput;
还是通过读取 epoll 实例对应匿名文件的 private_data 得到 eventpoll 实例。
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
ep = f.file->private_data;
接下来调用 ep_poll 来完成对应的事件收集并传递到用户空间。
error = ep_poll(ep, events, maxevents, timeout);
ep_poll
还记得第 23 讲里介绍 epoll 函数的时候,对应的 timeout 值可以是大于 0,等于 0 和小于 0 么?这里 ep_poll 就分别对 timeout 不同值的场景进行了处理。如果大于 0 则产生了一个超时时间,如果等于 0 则立即检查是否有事件发生。
*/
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,int maxevents, long timeout)
{
int res = 0, eavail, timed_out = 0;
unsigned long flags;
u64 slack = 0;
wait_queue_entry_t wait;
ktime_t expires, *to = NULL;
if (timeout > 0) {
struct timespec64 end_time = ep_set_mstimeout(timeout);
slack = select_estimate_accuracy(&end_time);
to = &expires;
*to = timespec64_to_ktime(end_time);
} else if (timeout == 0) {
* Avoid the unnecessary trip to the wait queue loop, if the
* caller specified a non blocking operation.
*/
timed_out = 1;
spin_lock_irqsave(&ep->lock, flags);
goto check_events;
}
接下来尝试获得 eventpoll 上的锁:
spin_lock_irqsave(&ep->lock, flags);
获得这把锁之后,检查当前是否有事件发生,如果没有,就把当前进程加入到 eventpoll 的等待队列 wq 中,这样做的目的是当事件发生时,ep_poll_callback 函数可以把该等待进程唤醒。
if (!ep_events_available(ep)) {
* Busy poll timed out. Drop NAPI ID for now, we can add
* it back in when we have moved a socket with a valid NAPI
* ID onto the ready list.
*/
ep_reset_busy_poll_napi_id(ep);
* We don't have any available event to return to the caller.
* We need to sleep here, and we will be wake up by
* ep_poll_callback() when events will become available.
*/
init_waitqueue_entry(&wait, current);
__add_wait_queue_exclusive(&ep->wq, &wait);
紧接着是一个无限循环, 这个循环中通过调用 schedule_hrtimeout_range,将当前进程陷入休眠,CPU 时间被调度器调度给其他进程使用,当然,当前进程可能会被唤醒,唤醒的条件包括有以下四种:
当前进程被 CPU 重新调度,进入 for 循环重新判断,如果没有满足前三个条件,就又重新进入休眠。
对应的 1、2、3 都会通过 break 跳出循环,直接返回。
for (;;) {
* We don't want to sleep if the ep_poll_callback() sends us
* a wakeup in between. That's why we set the task state
* to TASK_INTERRUPTIBLE before doing the checks.
*/
set_current_state(TASK_INTERRUPTIBLE);
* Always short-circuit for fatal signals to allow
* threads to make a timely exit without the chance of
* finding more events available and fetching
* repeatedly.
*/
if (fatal_signal_pending(current)) {
res = -EINTR;
break;
}
if (ep_events_available(ep) || timed_out)
break;
if (signal_pending(current)) {
res = -EINTR;
break;
}
spin_unlock_irqrestore(&ep->lock, flags);
if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
timed_out = 1;
spin_lock_irqsave(&ep->lock, flags);
}
如果进程从休眠中返回,则将当前进程从 eventpoll 的等待队列中删除,并且设置当前进程为 TASK_RUNNING 状态。
__remove_wait_queue(&ep->wq, &wait);
__set_current_state(TASK_RUNNING);
最后,调用 ep_send_events 将事件拷贝到用户空间。
* Try to transfer events to user space. In case we get 0 events and
* there's still timeout left over, we go trying again in search of
* more luck.
*/
if (!res && eavail &&
!(res = ep_send_events(ep, events, maxevents)) && !timed_out)
goto fetch_events;
return res;
ep_send_events
ep_send_events 这个函数会将 ep_send_events_proc 作为回调函数并调用 ep_scan_ready_list 函数,ep_scan_ready_list 函数调用 ep_send_events_proc 对每个已经就绪的事件循环处理。
ep_send_events_proc 循环处理就绪事件时,会再次调用每个文件描述符的 poll 方法,以便确定确实有事件发生。为什么这样做呢?这是为了确定注册的事件在这个时刻还是有效的。
可以看到,尽管 ep_send_events_proc 已经尽可能的考虑周全,使得用户空间获得的事件通知都是真实有效的,但还是有一定的概率,当 ep_send_events_proc 再次调用文件上的 poll 函数之后,用户空间获得的事件通知已经不再有效,这可能是用户空间已经处理掉了,或者其他什么情形。还记得第 22 讲吗,在这种情况下,如果套接字不是非阻塞的,整个进程将会被阻塞,这也是为什么将非阻塞套接字配合 epoll 使用作为最佳实践的原因。 在进行简单的事件掩码校验之后,ep_send_events_proc 将事件结构体拷贝到用户空间需要的数据结构中。这是通过 __put_user 方法完成的。
revents = ep_item_poll(epi, &pt);
* If the event mask intersect the caller-requested one,
* deliver the event to userspace. Again, ep_scan_ready_list()
* is holding "mtx", so no operations coming from userspace
* can change the item.
*/
if (revents) {
if (__put_user(revents, &uevent->events) ||
__put_user(epi->event.data, &uevent->data)) {
list_add(&epi->rdllink, head);
ep_pm_stay_awake(epi);
return eventcnt ? eventcnt : -EFAULT;
}
eventcnt++;
uevent++;
Level-triggered VS Edge-triggered
在前面的文章里,我们一直都在强调 level-triggered 和 edge-triggered 之间的区别。 从实现角度来看其实非常简单,在 ep_send_events_proc 函数的最后,针对 level-triggered 情况,当前的 epoll_item 对象被重新加到 eventpoll 的就绪列表中,这样在下一次 epoll_wait 调用时,这些 epoll_item 对象就会被重新处理。
在前面我们提到,在最终拷贝到用户空间有效事件列表中之前,会调用对应文件的 poll 方法,以确定这个事件是不是依然有效。所以,如果用户空间程序已经处理掉该事件,就不会被再次通知;如果没有处理,意味着该事件依然有效,就会被再次通知。
else if (!(epi->event.events & EPOLLET)) {
* If this file has been added with Level
* Trigger mode, we need to insert back inside
* the ready list, so that the next call to
* epoll_wait() will check again the events
* availability. At this point, no one can insert
* into ep->rdllist besides us. The epoll_ctl()
* callers are locked out by
* ep_scan_ready_list() holding "mtx" and the
* poll callback will queue them in ep->ovflist.
*/
list_add_tail(&epi->rdllink, &ep->rdllist);
ep_pm_stay_awake(epi);
}
epoll VS poll/select
最后,我们从实现角度来说明一下为什么 epoll 的效率要远远高于 poll/select。
首先,poll/select 先将要监听的 fd 从用户空间拷贝到内核空间, 然后在内核空间里面进行处理之后,再拷贝给用户空间。这里就涉及到内核空间申请内存,释放内存等等过程,这在大量 fd 情况下,是非常耗时的。而 epoll 维护了一个红黑树,通过对这棵黑红树进行操作,可以避免大量的内存申请和释放的操作,而且查找速度非常快。
下面的代码就是 poll/select 在内核空间申请内存的展示。可以看到 select 是先尝试申请栈上资源, 如果需要监听的 fd 比较多, 就会去申请堆空间的资源。
int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, struct timespec64 *end_time)
{
fd_set_bits fds;
void *bits;
int ret, max_fds;
size_t size, alloc_size;
struct fdtable *fdt;
long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];
ret = -EINVAL;
if (n < 0)
goto out_nofds;
rcu_read_lock();
fdt = files_fdtable(current->files);
max_fds = fdt->max_fds;
rcu_read_unlock();
if (n > max_fds)
n = max_fds;
* We need 6 bitmaps (in/out/ex for both incoming and outgoing),
* since we used fdset we need to allocate memory in units of
* long-words.
*/
size = FDS_BYTES(n);
bits = stack_fds;
if (size > sizeof(stack_fds) / 6) {
ret = -ENOMEM;
if (size > (SIZE_MAX / 6))
goto out_nofds;
alloc_size = 6 * size;
bits = kvmalloc(alloc_size, GFP_KERNEL);
if (!bits)
goto out_nofds;
}
fds.in = bits;
fds.out = bits + size;
fds.ex = bits + 2*size;
fds.res_in = bits + 3*size;
fds.res_out = bits + 4*size;
fds.res_ex = bits + 5*size;
...
第二,select/poll 从休眠中被唤醒时,如果监听多个 fd,只要其中有一个 fd 有事件发生,内核就会遍历内部的 list 去检查到底是哪一个事件到达,并没有像 epoll 一样, 通过 fd 直接关联 eventpoll 对象,快速地把 fd 直接加入到 eventpoll 的就绪列表中。
static int do_select(int n, fd_set_bits *fds, struct timespec64 *end_time)
{
...
retval = 0;
for (;;) {
unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
bool can_busy_loop = false;
inp = fds->in; outp = fds->out; exp = fds->ex;
rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;
for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
unsigned long in, out, ex, all_bits, bit = 1, mask, j;
unsigned long res_in = 0, res_out = 0, res_ex = 0;
in = *inp++; out = *outp++; ex = *exp++;
all_bits = in | out | ex;
if (all_bits == 0) {
i += BITS_PER_LONG;
continue;
}
if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE,
to, slack))
timed_out = 1;
...
总结
在这次答疑中,我希望通过深度分析 epoll 的源码实现,帮你理解 epoll 的实现原理。
epoll 维护了一棵红黑树来跟踪所有待检测的文件描述字,黑红树的使用减少了内核和用户空间大量的数据拷贝和内存分配,大大提高了性能。
同时,epoll 维护了一个链表来记录就绪事件,内核在每个文件有事件发生时将自己登记到这个就绪事件列表中,通过内核自身的文件 file-eventpoll 之间的回调和唤醒机制,减少了对内核描述字的遍历,大大加速了事件通知和检测的效率,这也为 level-triggered 和 edge-triggered 的实现带来了便利。
通过对比 poll/select 的实现,我们发现 epoll 确实克服了 poll/select 的种种弊端,不愧是 Linux 下高性能网络编程的皇冠。我们应该感谢 Linux 社区的大神们设计了这么强大的事件分发机制,让我们在 Linux 下可以享受高性能网络服务器带来的种种技术红利。