极客时间已完结课程限时免费阅读

14 | 文件IO:实现高效正确的文件读写并非易事

14 | 文件IO:实现高效正确的文件读写并非易事-极客时间

14 | 文件IO:实现高效正确的文件读写并非易事

讲述:王少泽

时长16:11大小14.84M

你好,我是朱晔。今天,我们来聊聊如何实现高效、正确的文件操作。
随着数据库系统的成熟和普及,需要直接做文件 IO 操作的需求越来越少,这就导致我们对相关 API 不够熟悉,以至于遇到类似文件导出、三方文件对账等需求时,只能临时抱佛脚,随意搜索一些代码完成需求,出现性能问题或者 Bug 后不知从何处入手。
今天这篇文章,我就会从字符编码、缓冲区和文件句柄释放这 3 个常见问题出发,和你分享如何解决与文件操作相关的性能问题或者 Bug。如果你对文件操作相关的 API 不够熟悉,可以查看Oracle 官网的介绍

文件读写需要确保字符编码一致

有一个项目需要读取三方的对账文件定时对账,原先一直是单机处理的,没什么问题。后来为了提升性能,使用双节点同时处理对账,每一个节点处理部分对账数据,但新增的节点在处理文件中中文的时候总是读取到乱码。
程序代码都是一致的,为什么老节点就不会有问题呢?我们知道,这很可能是写代码时没有注意编码问题导致的。接下来,我们就分析下这个问题吧。
为模拟这个场景,我们使用 GBK 编码把“你好 hi”写入一个名为 hello.txt 的文本文件,然后直接以字节数组形式读取文件内容,转换为十六进制字符串输出到日志中:
Files.deleteIfExists(Paths.get("hello.txt"));
Files.write(Paths.get("hello.txt"), "你好hi".getBytes(Charset.forName("GBK")));
log.info("bytes:{}", Hex.encodeHexString(Files.readAllBytes(Paths.get("hello.txt"))).toUpperCase());
输出如下:
13:06:28.955 [main] INFO org.geekbang.time.commonmistakes.io.demo3.FileBadEncodingIssueApplication - bytes:C4E3BAC36869
虽然我们打开文本文件时看到的是“你好 hi”,但不管是什么文字,计算机中都是按照一定的规则将其以二进制保存的。这个规则就是字符集,字符集枚举了所有支持的字符映射成二进制的映射表。在处理文件读写的时候,如果是在字节层面进行操作,那么不会涉及字符编码问题;而如果需要在字符层面进行读写的话,就需要明确字符的编码方式也就是字符集了。
当时出现问题的文件读取代码是这样的:
char[] chars = new char[10];
String content = "";
try (FileReader fileReader = new FileReader("hello.txt")) {
int count;
while ((count = fileReader.read(chars)) != -1) {
content += new String(chars, 0, count);
}
}
log.info("result:{}", content);
可以看到,是使用了 FileReader 类以字符方式进行文件读取,日志中读取出来的“你好”变为了乱码:
13:06:28.961 [main] INFO org.geekbang.time.commonmistakes.io.demo3.FileBadEncodingIssueApplication - result:���hi
显然,这里并没有指定以什么字符集来读取文件中的字符。查看JDK 文档可以发现,FileReader 是以当前机器的默认字符集来读取文件的,如果希望指定字符集的话,需要直接使用 InputStreamReader 和 FileInputStream。
到这里我们就明白了,FileReader 虽然方便但因为使用了默认字符集对环境产生了依赖,这就是为什么老的机器上程序可以正常运作,在新节点上读取中文时却产生了乱码。
那,怎么确定当前机器的默认字符集呢?写一段代码输出当前机器的默认字符集,以及 UTF-8 方式编码的“你好 hi”的十六进制字符串:
log.info("charset: {}", Charset.defaultCharset());
Files.write(Paths.get("hello2.txt"), "你好hi".getBytes(Charsets.UTF_8));
log.info("bytes:{}", Hex.encodeHexString(Files.readAllBytes(Paths.get("hello2.txt"))).toUpperCase());
输出结果如下:
13:06:28.961 [main] INFO org.geekbang.time.commonmistakes.io.demo3.FileBadEncodingIssueApplication - charset: UTF-8
13:06:28.962 [main] INFO org.geekbang.time.commonmistakes.io.demo3.FileBadEncodingIssueApplication - bytes:E4BDA0E5A5BD6869
可以看到,当前机器默认字符集是 UTF-8,当然无法读取 GBK 编码的汉字。UTF-8 编码的“你好”的十六进制是 E4BDA0E5A5BD,每一个汉字需要三个字节;而 GBK 编码的汉字,每一个汉字两个字节。字节长度都不一样,以 GBK 编码后保存的汉字,以 UTF8 进行解码读取,必然不会成功。
定位到问题后,修复就很简单了。按照文档所说,直接使用 FileInputStream 拿文件流,然后使用 InputStreamReader 读取字符流,并指定字符集为 GBK:
private static void right1() throws IOException {
char[] chars = new char[10];
String content = "";
try (FileInputStream fileInputStream = new FileInputStream("hello.txt");
InputStreamReader inputStreamReader = new InputStreamReader(fileInputStream, Charset.forName("GBK"))) {
int count;
while ((count = inputStreamReader.read(chars)) != -1) {
content += new String(chars, 0, count);
}
}
log.info("result: {}", content);
}
从日志中看到,修复后的代码正确读取到了“你好 Hi”。
13:06:28.963 [main] INFO org.geekbang.time.commonmistakes.io.demo3.FileBadEncodingIssueApplication - result: 你好hi
如果你觉得这种方式比较麻烦的话,使用 JDK1.7 推出的 Files 类的 readAllLines 方法,可以很方便地用一行代码完成文件内容读取:
log.info("result: {}", Files.readAllLines(Paths.get("hello.txt"), Charset.forName("GBK")).stream().findFirst().orElse(""));
但这种方式有个问题是,读取超出内存大小的大文件时会出现 OOM。为什么呢?
打开 readAllLines 方法的源码可以看到,readAllLines 读取文件所有内容后,放到一个 List<String> 中返回,如果内存无法容纳这个 List,就会 OOM:
public static List<String> readAllLines(Path path, Charset cs) throws IOException {
try (BufferedReader reader = newBufferedReader(path, cs)) {
List<String> result = new ArrayList<>();
for (;;) {
String line = reader.readLine();
if (line == null)
break;
result.add(line);
}
return result;
}
}
那么,有没有办法实现按需的流式读取呢?比如,需要消费某行数据时再读取,而不是把整个文件一次性读取到内存?
当然有,解决方案就是 File 类的 lines 方法。接下来,我就与你说说使用 lines 方法时需要注意的一些问题。

使用 Files 类静态方法进行文件操作注意释放文件句柄

与 readAllLines 方法返回 List<String> 不同,lines 方法返回的是 Stream<String>。这,使得我们在需要时可以不断读取、使用文件中的内容,而不是一次性地把所有内容都读取到内存中,因此避免了 OOM。
接下来,我通过一段代码测试一下。我们尝试读取一个 1 亿 1 万行的文件,文件占用磁盘空间超过 4GB。如果使用 -Xmx512m -Xms512m 启动 JVM 控制最大堆内存为 512M 的话,肯定无法一次性读取这样的大文件,但通过 Files.lines 方法就没问题。
在下面的代码中,首先输出这个文件的大小,然后计算读取 20 万行数据和 200 万行数据的耗时差异,最后逐行读取文件,统计文件的总行数:
//输出文件大小
log.info("file size:{}", Files.size(Paths.get("test.txt")));
StopWatch stopWatch = new StopWatch();
stopWatch.start("read 200000 lines");
//使用Files.lines方法读取20万行数据
log.info("lines {}", Files.lines(Paths.get("test.txt")).limit(200000).collect(Collectors.toList()).size());
stopWatch.stop();
stopWatch.start("read 2000000 lines");
//使用Files.lines方法读取200万行数据
log.info("lines {}", Files.lines(Paths.get("test.txt")).limit(2000000).collect(Collectors.toList()).size());
stopWatch.stop();
log.info(stopWatch.prettyPrint());
AtomicLong atomicLong = new AtomicLong();
//使用Files.lines方法统计文件总行数
Files.lines(Paths.get("test.txt")).forEach(line->atomicLong.incrementAndGet());
log.info("total lines {}", atomicLong.get());
输出结果如下:
可以看到,实现了全文件的读取、统计了整个文件的行数,并没有出现 OOM;读取 200 万行数据耗时 760ms,读取 20 万行数据仅需 267ms。这些都可以说明,File.lines 方法并不是一次性读取整个文件的,而是按需读取。
到这里,你觉得这段代码有什么问题吗?
问题在于读取完文件后没有关闭。我们通常会认为静态方法的调用不涉及资源释放,因为方法调用结束自然代表资源使用完成,由 API 释放资源,但对于 Files 类的一些返回 Stream 的方法并不是这样。这,是一个很容易被忽略的严重问题。
我就曾遇到过一个案例:程序在生产上运行一段时间后就会出现 too many files 的错误,我们想当然地认为是 OS 设置的最大文件句柄太小了,就让运维放开这个限制,但放开后还是会出现这样的问题。经排查发现,其实是文件句柄没有释放导致的,问题就出在 Files.lines 方法上。
我们来重现一下这个问题,随便写入 10 行数据到一个 demo.txt 文件中:
Files.write(Paths.get("demo.txt"),
IntStream.rangeClosed(1, 10).mapToObj(i -> UUID.randomUUID().toString()).collect(Collectors.toList())
, UTF_8, CREATE, TRUNCATE_EXISTING);
然后使用 Files.lines 方法读取这个文件 100 万次,每读取一行计数器 +1:
LongAdder longAdder = new LongAdder();
IntStream.rangeClosed(1, 1000000).forEach(i -> {
try {
Files.lines(Paths.get("demo.txt")).forEach(line -> longAdder.increment());
} catch (IOException e) {
e.printStackTrace();
}
});
log.info("total : {}", longAdder.longValue());
运行后马上可以在日志中看到如下错误:
java.nio.file.FileSystemException: demo.txt: Too many open files
at sun.nio.fs.UnixException.translateToIOException(UnixException.java:91)
at sun.nio.fs.UnixException.rethrowAsIOException(UnixException.java:102)
at sun.nio.fs.UnixException.rethrowAsIOException(UnixException.java:107)
使用 lsof 命令查看进程打开的文件,可以看到打开了 1 万多个 demo.txt:
lsof -p 63937
...
java 63902 zhuye *238r REG 1,4 370 12934160647 /Users/zhuye/Documents/common-mistakes/demo.txt
java 63902 zhuye *239r REG 1,4 370 12934160647 /Users/zhuye/Documents/common-mistakes/demo.txt
...
lsof -p 63937 | grep demo.txt | wc -l
10007
其实,在JDK 文档中有提到,注意使用 try-with-resources 方式来配合,确保流的 close 方法可以调用释放资源。
这也很容易理解,使用流式处理,如果不显式地告诉程序什么时候用完了流,程序又如何知道呢,它也不能帮我们做主何时关闭文件。
修复方式很简单,使用 try 来包裹 Stream 即可:
LongAdder longAdder = new LongAdder();
IntStream.rangeClosed(1, 1000000).forEach(i -> {
try (Stream<String> lines = Files.lines(Paths.get("demo.txt"))) {
lines.forEach(line -> longAdder.increment());
} catch (IOException e) {
e.printStackTrace();
}
});
log.info("total : {}", longAdder.longValue());
修改后的代码不再出现错误日志,因为读取了 100 万次包含 10 行数据的文件,所以最终正确输出了 1000 万:
14:19:29.410 [main] INFO org.geekbang.time.commonmistakes.io.demo2.FilesStreamOperationNeedCloseApplication - total : 10000000
查看 lines 方法源码可以发现,Stream 的 close 注册了一个回调,来关闭 BufferedReader 进行资源释放:
public static Stream<String> lines(Path path, Charset cs) throws IOException {
BufferedReader br = Files.newBufferedReader(path, cs);
try {
return br.lines().onClose(asUncheckedRunnable(br));
} catch (Error|RuntimeException e) {
try {
br.close();
} catch (IOException ex) {
try {
e.addSuppressed(ex);
} catch (Throwable ignore) {}
}
throw e;
}
}
private static Runnable asUncheckedRunnable(Closeable c) {
return () -> {
try {
c.close();
} catch (IOException e) {
throw new UncheckedIOException(e);
}
};
}
从命名上可以看出,使用 BufferedReader 进行字符流读取时,用到了缓冲。这里缓冲 Buffer 的意思是,使用一块内存区域作为直接操作的中转。
比如,读取文件操作就是一次性读取一大块数据(比如 8KB)到缓冲区,后续的读取可以直接从缓冲区返回数据,而不是每次都直接对应文件 IO。写操作也是类似。如果每次写几十字节到文件都对应一次 IO 操作,那么写一个几百兆的大文件可能就需要千万次的 IO 操作,耗时会非常久。
接下来,我就通过几个实验,和你说明使用缓冲 Buffer 的重要性,并对比下不同使用方式的文件读写性能,来帮助你用对、用好 Buffer。

注意读写文件要考虑设置缓冲区

我曾遇到过这么一个案例,一段先进行文件读入再简单处理后写入另一个文件的业务代码,由于开发人员使用了单字节的读取写入方式,导致执行得巨慢,业务量上来后需要数小时才能完成。
我们来模拟一下相关实现。创建一个文件随机写入 100 万行数据,文件大小在 35MB 左右:
Files.write(Paths.get("src.txt"),
IntStream.rangeClosed(1, 1000000).mapToObj(i -> UUID.randomUUID().toString()).collect(Collectors.toList())
, UTF_8, CREATE, TRUNCATE_EXISTING);
当时开发人员写的文件处理代码大概是这样的:使用 FileInputStream 获得一个文件输入流,然后调用其 read 方法每次读取一个字节,最后通过一个 FileOutputStream 文件输出流把处理后的结果写入另一个文件。
为了简化逻辑便于理解,这里我们不对数据进行处理,直接把原文件数据写入目标文件,相当于文件复制:
private static void perByteOperation() throws IOException {
try (FileInputStream fileInputStream = new FileInputStream("src.txt");
FileOutputStream fileOutputStream = new FileOutputStream("dest.txt")) {
int i;
while ((i = fileInputStream.read()) != -1) {
fileOutputStream.write(i);
}
}
}
这样的实现,复制一个 35MB 的文件居然耗时 190 秒。
显然,每读取一个字节、每写入一个字节都进行一次 IO 操作,代价太大了。解决方案就是,考虑使用缓冲区作为过渡,一次性从原文件读取一定数量的数据到缓冲区,一次性写入一定数量的数据到目标文件。
改良后,使用 100 字节作为缓冲区,使用 FileInputStream 的 byte[]的重载来一次性读取一定字节的数据,同时使用 FileOutputStream 的 byte[]的重载实现一次性从缓冲区写入一定字节的数据到文件:
private static void bufferOperationWith100Buffer() throws IOException {
try (FileInputStream fileInputStream = new FileInputStream("src.txt");
FileOutputStream fileOutputStream = new FileOutputStream("dest.txt")) {
byte[] buffer = new byte[100];
int len = 0;
while ((len = fileInputStream.read(buffer)) != -1) {
fileOutputStream.write(buffer, 0, len);
}
}
}
仅仅使用了 100 个字节的缓冲区作为过渡,完成 35M 文件的复制耗时缩短到了 26 秒,是无缓冲时性能的 7 倍;如果把缓冲区放大到 1000 字节,耗时可以进一步缩短到 342 毫秒。可以看到,在进行文件 IO 处理的时候,使用合适的缓冲区可以明显提高性能
你可能会说,实现文件读写还要自己 new 一个缓冲区出来,太麻烦了,不是有一个 BufferedInputStream 和 BufferedOutputStream 可以实现输入输出流的缓冲处理吗?
是的,它们在内部实现了一个默认 8KB 大小的缓冲区。但是,在使用 BufferedInputStream 和 BufferedOutputStream 时,我还是建议你再使用一个缓冲进行读写,不要因为它们实现了内部缓冲就进行逐字节的操作。
接下来,我写一段代码比较下使用下面三种方式读写一个字节的性能:
直接使用 BufferedInputStream 和 BufferedOutputStream;
额外使用一个 8KB 缓冲,使用 BufferedInputStream 和 BufferedOutputStream;
直接使用 FileInputStream 和 FileOutputStream,再使用一个 8KB 的缓冲。
//使用BufferedInputStream和BufferedOutputStream
private static void bufferedStreamByteOperation() throws IOException {
try (BufferedInputStream bufferedInputStream = new BufferedInputStream(new FileInputStream("src.txt"));
BufferedOutputStream bufferedOutputStream = new BufferedOutputStream(new FileOutputStream("dest.txt"))) {
int i;
while ((i = bufferedInputStream.read()) != -1) {
bufferedOutputStream.write(i);
}
}
}
//额外使用一个8KB缓冲,再使用BufferedInputStream和BufferedOutputStream
private static void bufferedStreamBufferOperation() throws IOException {
try (BufferedInputStream bufferedInputStream = new BufferedInputStream(new FileInputStream("src.txt"));
BufferedOutputStream bufferedOutputStream = new BufferedOutputStream(new FileOutputStream("dest.txt"))) {
byte[] buffer = new byte[8192];
int len = 0;
while ((len = bufferedInputStream.read(buffer)) != -1) {
bufferedOutputStream.write(buffer, 0, len);
}
}
}
//直接使用FileInputStream和FileOutputStream,再使用一个8KB的缓冲
private static void largerBufferOperation() throws IOException {
try (FileInputStream fileInputStream = new FileInputStream("src.txt");
FileOutputStream fileOutputStream = new FileOutputStream("dest.txt")) {
byte[] buffer = new byte[8192];
int len = 0;
while ((len = fileInputStream.read(buffer)) != -1) {
fileOutputStream.write(buffer, 0, len);
}
}
}
结果如下:
---------------------------------------------
ns % Task name
---------------------------------------------
1424649223 086% bufferedStreamByteOperation
117807808 007% bufferedStreamBufferOperation
112153174 007% largerBufferOperation
可以看到,第一种方式虽然使用了缓冲流,但逐字节的操作因为方法调用次数实在太多还是慢,耗时 1.4 秒;后面两种方式的性能差不多,耗时 110 毫秒左右。虽然第三种方式没有使用缓冲流,但使用了 8KB 大小的缓冲区,和缓冲流默认的缓冲区大小相同。
看到这里,你可能会疑惑了,既然这样使用 BufferedInputStream 和 BufferedOutputStream 有什么意义呢?
其实,这里我是为了演示所以示例三使用了固定大小的缓冲区,但在实际代码中每次需要读取的字节数很可能不是固定的,有的时候读取几个字节,有的时候读取几百字节,这个时候有一个固定大小较大的缓冲,也就是使用 BufferedInputStream 和 BufferedOutputStream 做为后备的稳定的二次缓冲,就非常有意义了。
最后我要补充说明的是,对于类似的文件复制操作,如果希望有更高性能,可以使用 FileChannel 的 transfreTo 方法进行流的复制。在一些操作系统(比如高版本的 Linux 和 UNIX)上可以实现 DMA(直接内存访问),也就是数据从磁盘经过总线直接发送到目标文件,无需经过内存和 CPU 进行数据中转:
private static void fileChannelOperation() throws IOException {
FileChannel in = FileChannel.open(Paths.get("src.txt"), StandardOpenOption.READ);
FileChannel out = FileChannel.open(Paths.get("dest.txt"), CREATE, WRITE);
in.transferTo(0, in.size(), out);
}
你可以通过这篇文章,了解 transferTo 方法的更多细节。
在测试 FileChannel 性能的同时,我再运行一下这一小节中的所有实现,比较一下读写 35MB 文件的耗时。
---------------------------------------------
ns % Task name
---------------------------------------------
183673362265 098% perByteOperation
2034504694 001% bufferOperationWith100Buffer
749967898 000% bufferedStreamByteOperation
110602155 000% bufferedStreamBufferOperation
114542834 000% largerBufferOperation
050068602 000% fileChannelOperation
可以看到,最慢的是单字节读写文件流的方式,耗时 183 秒,最快的是 FileChannel.transferTo 方式进行流转发的方式,耗时 50 毫秒。两者耗时相差达到 3600 倍!

重点回顾

今天,我通过三个案例和你分享了文件读写操作中最重要的几个方面。
第一,如果需要读写字符流,那么需要确保文件中字符的字符集和字符流的字符集是一致的,否则可能产生乱码。
第二,使用 Files 类的一些流式处理操作,注意使用 try-with-resources 包装 Stream,确保底层文件资源可以释放,避免产生 too many open files 的问题。
第三,进行文件字节流操作的时候,一般情况下不考虑进行逐字节操作,使用缓冲区进行批量读写减少 IO 次数,性能会好很多。一般可以考虑直接使用缓冲输入输出流 BufferedXXXStream,追求极限性能的话可以考虑使用 FileChannel 进行流转发。
最后我要强调的是,文件操作因为涉及操作系统和文件系统的实现,JDK 并不能确保所有 IO API 在所有平台的逻辑一致性,代码迁移到新的操作系统或文件系统时,要重新进行功能测试和性能测试。
今天用到的代码,我都放在了 GitHub 上,你可以点击这个链接查看。

思考与讨论

Files.lines 方法进行流式处理,需要使用 try-with-resources 进行资源释放。那么,使用 Files 类中其他返回 Stream 包装对象的方法进行流式处理,比如 newDirectoryStream 方法返回 DirectoryStream<Path>,list、walk 和 find 方法返回 Stream<Path>,也同样有资源释放问题吗?
Java 的 File 类和 Files 类提供的文件复制、重命名、删除等操作,是原子性的吗?
对于文件操作,你还遇到过什么坑吗?我是朱晔,欢迎在评论区与我留言分享你的想法,也欢迎你把这篇文章分享给你的朋友或同事,一起交流。
分享给需要的人,Ta购买本课程,你将得18
生成海报并分享

赞 24

提建议

上一篇
13 | 日志:日志记录真没你想象的那么简单
下一篇
15 | 序列化:一来一回你还是原来的你吗?
unpreview
 写留言

精选留言(23)

  • Darren
    2020-04-13
    今天算是打开了一片新的天地,因为日常的开发设计文件的不太多,竟然不知道有Files这样的牛逼操作,之前对于JDK相关的NIO关注的也不多,真的是打开了一闪窗。 先说下FileChannel 的 transfreTo 方法,这个方法出现在眼前很多次,因为之前看Kafka为什么吞吐量达的原因的时候,提到了2点:批处理思想和零拷贝; 批处理思想:就是对于Kafka内部很多地方来说,不是消息来了就发送,而是有攒一波发送一次,这样对于吞吐量有极大的提升,对于需要实时处理的情况,Kafka就不是很适合的原因; 零拷贝:Kafka快的另外一个原因是零拷贝,避免了内存态到内核态以及网络的拷贝,直接读取文件,发送到网络出去,零拷贝的含义不是没有拷贝,而是没有用户态到核心态的拷贝。 而在提到零拷贝的实现时,Java中说的就是FileChannel 的 transfreTo 方法。 然后回答下问题: 第一个问题: Files的相关方法文档描述: When not using the try-with-resources construct, then directory stream's close method should be invoked after iteration is completed so as to free any resources held for the open directory. 所以是需要手动关闭的。 第二个问题: 没有原子操作,因此是线程不安全的。个人理解,其实即使加上了原子操作,也是鸡肋,不实用的很,原因是:File 类和 Files的相关操作,其实都是调用操作系统的文件系统操作,这个文件除了JVM操作外,可能别的也在操作,因此还不如不保证,完全基于操作系统的文件系统去保证相关操作的正确性。
    展开

    作者回复: 👍🏻👍🏻👍🏻👍🏻

    共 7 条评论
    74
  • 👽
    2020-04-13
    这篇专栏内容不算多,但是感觉可扩展的地方很多。 我认为:读写字符流乱码,其实本质上在于环境不一致的问题。其实跟日志路径之类的问题思路一致。服务器保存日志,如果配置绝对路径,C盘下的log文件夹。等部署到服务器上就会出错。除了针对不同的环境使用不同的配置,还可以尝试使用相对路径,亦或者将路径以存数据库的方式持久化。其实本质上,跟编码格式的处理方式一样,尽量屏蔽不同环境之间的差异。 保证文件流释放,同样也可以延伸。不仅仅是文件流,任何涉及资源占用问题的时候,都需要考虑资源是否可以保证被释放。try-whit-resources来解决IO流,其实同样也应用于各种需要释放资源的场景。 关于缓冲区,个人理解,一个典型的应用就是数据库的分页查询。如果将所有数据一次查出,不但消耗资源,甚至有可能内存不够。如果一次只查一个,如果需要查询的是几十条数据,频繁进行数据库访问,性能也较差。所以,采取了折中的方案,分页查询,一次仅查出一部分数据。既不会内存溢出,也保证了响应速度。
    展开

    作者回复: 不错

    15
  • 梦倚栏杆
    2020-04-12
    第一个问题:都间接实现了autoCloseable接口,所以都可以使用try-with-resources进行释放。 第二个非原子性,没有锁,也没有异常后的回滚。需要调用方进行事务控制

    作者回复: 不错

    13
  • Geek_3b1096
    2020-04-15
    谢谢老师详细解说文件操作

    作者回复: 不客气,觉得好可以点赞转发

    5
  • 汝林外史
    2020-04-13
    BufferedInputStream的二级缓冲什么时候能用到呢?既然需要自己定义一个缓冲,比如2K,那么肯定也是控制一次读取2K,应该不会有读取超过2K的时候吧?

    作者回复: 你可能会疑惑了,既然这样使用 BufferedInputStream 和 BufferedOutputStream 有什么意义呢?其实,这里我是为了演示所以示例三使用了固定大小的缓冲区,但在实际代码中每次需要读取的字节数很可能不是固定的,有的时候读取几个字节,有的时候读取几百字节,这个时候有一个固定大小较大的缓冲,也就是使用 BufferedInputStream 和 BufferedOutputStream 做为后备的稳定的二次缓冲,就非常有意义了

    共 9 条评论
    5
  • Michael
    2020-04-19
    特别喜欢老师的这种工匠精神,对读者的每一个问题都精心回复

    作者回复: 感谢认可

    3
  • Monday
    2020-04-19
    gbk与utf8区别(本文总结所得): 1、gbk只适合中文编码方式,utf8全世界的编码方式 2、对于中文汉字,gbk使用2个字节,utf8使用3个字节;对于英文字母都是1个字节。这种变长编码方式,怎么区分汉字和英文呢?

    作者回复: 针对你的问题可以看一下http://www.ruanyifeng.com/blog/2007/10/ascii_unicode_and_utf-8.html 其中『UTF-8 的编码规则很简单,只有二条』一节就明白了

    共 3 条评论
    3
  • eazonshaw
    2020-04-12
    问题一: newDirectoryStream 方法返回 DirectoryStream方法,查看源码中的描述,该方法返回了文件夹中所有内容的迭代,当在没有使用try-with-resources构造体时,需要要在使用完文件流迭代后进行释放。 而list、walk 和 find 方法中,都有对资源进行关闭的操作。
    3
  • pedro
    2020-04-11
    第二个问题,不是原子的,所以需要注意,如果 io 异常,可能会出现复制后的文件不完整,文件未删除成功等问题

    作者回复: 是,其实我在思考题中也会补充更多正文无法详细阐述的坑

    3
  • LiuHu
    2020-08-10
    try-with-resources 实际上是 Java 的语法糖,在编译的时候只要返回对象实现了 AutoCloseable 接口,字节码会自动加上调用 close 方法实现资源自动关闭。 DirectoryStream<Path> 继承了 Closeable 接口,所以其子类需要实现 close 方法,看了下 UnixDirectoryStream.close 的实现确实关闭了资源, 所以没有资源释放问题。 list、walk 和 find 方法返回的 Stream<Path> 都会通过调用父类的 onClose 方法,注册 close 实现到 BaseStream中实现资源关闭,所以也没有资源释放问题。
    展开
    2
  • 珅珅君
    2020-07-27
    你好,关于BufferedInputStream有一点疑问,如果我构造BufferedInputStream的时候设置缓冲流的大小是1kb,这里缓冲区叫A,但是调用read(byte[])的时候额外用的是8kb缓冲,这里缓冲区叫B,那么读取文件的时候,这两种缓冲的大小的工作流程是什么样的。先B后A还是?

    作者回复: 先A后B(可能多次)

    2
  • pedro
    2020-04-11
    第一个问题,DirectoryStream 接口继承了 Closeable 接口,而 Closeable 接口继承了 AutoCloseable 接口,都可以使用 try-with-resources 进行资源释放。而 list,walk,find 都是返回 Stream,也都继承了 AutoCloseable 接口,并且可以主动调用 close 方法进行资源释放。
    2
  • James
    2020-07-27
    双缓冲的那个还不是很理解。 是不是就是有个更大的缓冲区 16k是吧。
    1
  • Carisy
    2020-06-03
    之前读tomcat不是很理解为啥用了两个chunkbuffer,现在豁然开朗!
    共 1 条评论
    1
  • Demon.Lee
    2020-04-11
    LongAdder longAdder = new LongAdder(); IntStream.rangeClosed(1, 1000000).forEach(i -> { try { try (Stream<String> lines = Files.lines(Paths.get("demo.txt"))) { lines.forEach(line -> longAdder.increment()); } } catch (IOException e) { e.printStackTrace(); } }); log.info("total : {}", longAdder.longValue()); ------------------------------------------------------ 我一开始还奇怪为啥要两个try,catch放里面不就行了么,想了一下才明白,是为了捕获里面释放资源的异常,相当于捕获finally中的异常。 两道题都去翻了源码,第一题我觉得也是需要主动释放,Path也算一种fd吧,不太确定;第二题没有看到锁什么的,不是原子性的,不过创建或删除文件,重复处理,操作系统层会报错,但写内容到文件中就需要注意了。
    展开

    作者回复: 直接放到catch里是可以的,这里我因为修改了wrong所以写成这样了。对于释放资源产生的异常,同样可以在catch中捕获,可以看一下try-with-resources语法糖会翻译成怎么样的代码就理解了。

    1
  • 小氘
    2020-04-11
    老师你好,请问java中哪些资源是需要我们手动释放的?
    共 2 条评论
    1
  • kyl
    2020-04-11
    又学到了,很棒,朱老师能不能讲讲文件解析的坑呢

    作者回复: 文件解析是指?

    共 8 条评论
    1
  • 可可
    2022-12-01 来自山东
    这两天恰好遇到一个问题:利用ssh从远程服务器下载文件,用到这段代码 fos = new FileOutputStream(saveFile); 下载之后在保持ssh连接的情况下无法删除文件。其实ssh连接和删除文件之间没有直接关系,但就是没发现问题原因。看了这节课里面提到的stream一定要close。忽然想到是不是文件输出流没关闭导致的啊。看了一下代码果然是这样。于是调用了fos.close()之后,ssh连接不用退出也顺利删掉文件了。 以后一定要注意FileOutputStream用完要及时close。
    展开
  • 芒果少侠
    2022-09-19 来自广东
    打卡学习记录,今天提到的第一个问题,经常有同事踩到。
  • 秃如其来
    2022-03-02
    AtomicLong atomicLong = new AtomicLong(); Files.lines(Paths.get("test.txt")).forEach(line->atomicLong.incrementAndGet()); long count = atomicLong.get() 可以用下面的代码替代么? long count = Files.lines(Paths.get("test.txt")).count();