12 | 有一亿个keys要统计,应该用哪种集合?
下载APP
关闭
渠道合作
推荐作者
12 | 有一亿个keys要统计,应该用哪种集合?
2020-09-02 蒋德钧 来自北京
《Redis核心技术与实战》
课程介绍
讲述:蒋德钧
时长20:12大小18.51M
你好,我是蒋德钧。
在 Web 和移动应用的业务场景中,我们经常需要保存这样一种信息:一个 key 对应了一个数据集合。我举几个例子。
手机 App 中的每天的用户登录信息:一天对应一系列用户 ID 或移动设备 ID;
电商网站上商品的用户评论列表:一个商品对应了一系列的评论;
用户在手机 App 上的签到打卡信息:一天对应一系列用户的签到记录;
应用网站上的网页访问信息:一个网页对应一系列的访问点击。
我们知道,Redis 集合类型的特点就是一个键对应一系列的数据,所以非常适合用来存取这些数据。但是,在这些场景中,除了记录信息,我们往往还需要对集合中的数据进行统计,例如:
在移动应用中,需要统计每天的新增用户数和第二天的留存用户数;
在电商网站的商品评论中,需要统计评论列表中的最新评论;
在签到打卡中,需要统计一个月内连续打卡的用户数;
在网页访问记录中,需要统计独立访客(Unique Visitor,UV)量。
通常情况下,我们面临的用户数量以及访问量都是巨大的,比如百万、千万级别的用户数量,或者千万级别、甚至亿级别的访问信息。所以,我们必须要选择能够非常高效地统计大量数据(例如亿级)的集合类型。
要想选择合适的集合,我们就得了解常用的集合统计模式。这节课,我就给你介绍集合类型常见的四种统计模式,包括聚合统计、排序统计、二值状态统计和基数统计。我会以刚刚提到的这四个场景为例,和你聊聊在这些统计模式下,什么集合类型能够更快速地完成统计,而且还节省内存空间。掌握了今天的内容,之后再遇到集合元素统计问题时,你就能很快地选出合适的集合类型了。
聚合统计
我们先来看集合元素统计的第一个场景:聚合统计。
所谓的聚合统计,就是指统计多个集合元素的聚合结果,包括:统计多个集合的共有元素(交集统计);把两个集合相比,统计其中一个集合独有的元素(差集统计);统计多个集合的所有元素(并集统计)。
在刚才提到的场景中,统计手机 App 每天的新增用户数和第二天的留存用户数,正好对应了聚合统计。
要完成这个统计任务,我们可以用一个集合记录所有登录过 App 的用户 ID,同时,用另一个集合记录每一天登录过 App 的用户 ID。然后,再对这两个集合做聚合统计。我们来看下具体的操作。
记录所有登录过 App 的用户 ID 还是比较简单的,我们可以直接使用 Set 类型,把 key 设置为 user:id,表示记录的是用户 ID,value 就是一个 Set 集合,里面是所有登录过 App 的用户 ID,我们可以把这个 Set 叫作累计用户 Set,如下图所示:
需要注意的是,累计用户 Set 中没有日期信息,我们是不能直接统计每天的新增用户的。所以,我们还需要把每一天登录的用户 ID,记录到一个新集合中,我们把这个集合叫作每日用户 Set,它有两个特点:
key 是 user:id 以及当天日期,例如 user:id:20200803;
value 是 Set 集合,记录当天登录的用户 ID。
在统计每天的新增用户时,我们只用计算每日用户 Set 和累计用户 Set 的差集就行。
我借助一个具体的例子来解释一下。
假设我们的手机 App 在 2020 年 8 月 3 日上线,那么,8 月 3 日前是没有用户的。此时,累计用户 Set 是空集,当天登录的用户 ID 会被记录到 key 为 user:id:20200803 的 Set 中。所以,user:id:20200803 这个 Set 中的用户就是当天的新增用户。
然后,我们计算累计用户 Set 和 user:id:20200803 Set 的并集结果,结果保存在 user:id 这个累计用户 Set 中,如下所示:
此时,user:id 这个累计用户 Set 中就有了 8 月 3 日的用户 ID。等到 8 月 4 日再统计时,我们把 8 月 4 日登录的用户 ID 记录到 user:id:20200804 的 Set 中。接下来,我们执行 SDIFFSTORE 命令计算累计用户 Set 和 user:id:20200804 Set 的差集,结果保存在 key 为 user:new 的 Set 中,如下所示:
可以看到,这个差集中的用户 ID 在 user:id:20200804 的 Set 中存在,但是不在累计用户 Set 中。所以,user:new 这个 Set 中记录的就是 8 月 4 日的新增用户。
当要计算 8 月 4 日的留存用户时,我们只需要再计算 user:id:20200803 和 user:id:20200804 两个 Set 的交集,就可以得到同时在这两个集合中的用户 ID 了,这些就是在 8 月 3 日登录,并且在 8 月 4 日留存的用户。执行的命令如下:
当你需要对多个集合进行聚合计算时,Set 类型会是一个非常不错的选择。不过,我要提醒你一下,这里有一个潜在的风险。
Set 的差集、并集和交集的计算复杂度较高,在数据量较大的情况下,如果直接执行这些计算,会导致 Redis 实例阻塞。所以,我给你分享一个小建议:你可以从主从集群中选择一个从库,让它专门负责聚合计算,或者是把数据读取到客户端,在客户端来完成聚合统计,这样就可以规避阻塞主库实例和其他从库实例的风险了。
排序统计
接下来,我们再来聊一聊应对集合元素排序需求的方法。我以在电商网站上提供最新评论列表的场景为例,进行讲解。
最新评论列表包含了所有评论中的最新留言,这就要求集合类型能对元素保序,也就是说,集合中的元素可以按序排列,这种对元素保序的集合类型叫作有序集合。
在 Redis 常用的 4 个集合类型中(List、Hash、Set、Sorted Set),List 和 Sorted Set 就属于有序集合。
List 是按照元素进入 List 的顺序进行排序的,而 Sorted Set 可以根据元素的权重来排序,我们可以自己来决定每个元素的权重值。比如说,我们可以根据元素插入 Sorted Set 的时间确定权重值,先插入的元素权重小,后插入的元素权重大。
看起来好像都可以满足需求,我们该怎么选择呢?
我先说说用 List 的情况。每个商品对应一个 List,这个 List 包含了对这个商品的所有评论,而且会按照评论时间保存这些评论,每来一个新评论,就用 LPUSH 命令把它插入 List 的队头。
在只有一页评论的时候,我们可以很清晰地看到最新的评论,但是,在实际应用中,网站一般会分页显示最新的评论列表,一旦涉及到分页操作,List 就可能会出现问题了。
假设当前的评论 List 是{A, B, C, D, E, F}(其中,A 是最新的评论,以此类推,F 是最早的评论),在展示第一页的 3 个评论时,我们可以用下面的命令,得到最新的三条评论 A、B、C:
然后,再用下面的命令获取第二页的 3 个评论,也就是 D、E、F。
但是,如果在展示第二页前,又产生了一个新评论 G,评论 G 就会被 LPUSH 命令插入到评论 List 的队头,评论 List 就变成了{G, A, B, C, D, E, F}。此时,再用刚才的命令获取第二页评论时,就会发现,评论 C 又被展示出来了,也就是 C、D、E。
之所以会这样,关键原因就在于,List 是通过元素在 List 中的位置来排序的,当有一个新元素插入时,原先的元素在 List 中的位置都后移了一位,比如说原来在第 1 位的元素现在排在了第 2 位。所以,对比新元素插入前后,List 相同位置上的元素就会发生变化,用 LRANGE 读取时,就会读到旧元素。
和 List 相比,Sorted Set 就不存在这个问题,因为它是根据元素的实际权重来排序和获取数据的。
我们可以按评论时间的先后给每条评论设置一个权重值,然后再把评论保存到 Sorted Set 中。Sorted Set 的 ZRANGEBYSCORE 命令就可以按权重排序后返回元素。这样的话,即使集合中的元素频繁更新,Sorted Set 也能通过 ZRANGEBYSCORE 命令准确地获取到按序排列的数据。
假设越新的评论权重越大,目前最新评论的权重是 N,我们执行下面的命令时,就可以获得最新的 10 条评论:
所以,在面对需要展示最新列表、排行榜等场景时,如果数据更新频繁或者需要分页显示,建议你优先考虑使用 Sorted Set。
二值状态统计
现在,我们再来分析下第三个场景:二值状态统计。这里的二值状态就是指集合元素的取值就只有 0 和 1 两种。在签到打卡的场景中,我们只用记录签到(1)或未签到(0),所以它就是非常典型的二值状态,
在签到统计时,每个用户一天的签到用 1 个 bit 位就能表示,一个月(假设是 31 天)的签到情况用 31 个 bit 位就可以,而一年的签到也只需要用 365 个 bit 位,根本不用太复杂的集合类型。这个时候,我们就可以选择 Bitmap。这是 Redis 提供的扩展数据类型。我来给你解释一下它的实现原理。
Bitmap 本身是用 String 类型作为底层数据结构实现的一种统计二值状态的数据类型。String 类型是会保存为二进制的字节数组,所以,Redis 就把字节数组的每个 bit 位利用起来,用来表示一个元素的二值状态。你可以把 Bitmap 看作是一个 bit 数组。
Bitmap 提供了 GETBIT/SETBIT 操作,使用一个偏移值 offset 对 bit 数组的某一个 bit 位进行读和写。不过,需要注意的是,Bitmap 的偏移量是从 0 开始算的,也就是说 offset 的最小值是 0。当使用 SETBIT 对一个 bit 位进行写操作时,这个 bit 位会被设置为 1。Bitmap 还提供了 BITCOUNT 操作,用来统计这个 bit 数组中所有“1”的个数。
那么,具体该怎么用 Bitmap 进行签到统计呢?我还是借助一个具体的例子来说明。
假设我们要统计 ID 3000 的用户在 2020 年 8 月份的签到情况,就可以按照下面的步骤进行操作。
第一步,执行下面的命令,记录该用户 8 月 3 号已签到。
第二步,检查该用户 8 月 3 日是否签到。
第三步,统计该用户在 8 月份的签到次数。
这样,我们就知道该用户在 8 月份的签到情况了,是不是很简单呢?接下来,你可以再思考一个问题:如果记录了 1 亿个用户 10 天的签到情况,你有办法统计出这 10 天连续签到的用户总数吗?
在介绍具体的方法之前,我们要先知道,Bitmap 支持用 BITOP 命令对多个 Bitmap 按位做“与”“或”“异或”的操作,操作的结果会保存到一个新的 Bitmap 中。
我以按位“与”操作为例来具体解释一下。从下图中,可以看到,三个 Bitmap bm1、bm2 和 bm3,对应 bit 位做“与”操作,结果保存到了一个新的 Bitmap 中(示例中,这个结果 Bitmap 的 key 被设为“resmap”)。
回到刚刚的问题,在统计 1 亿个用户连续 10 天的签到情况时,你可以把每天的日期作为 key,每个 key 对应一个 1 亿位的 Bitmap,每一个 bit 对应一个用户当天的签到情况。
接下来,我们对 10 个 Bitmap 做“与”操作,得到的结果也是一个 Bitmap。在这个 Bitmap 中,只有 10 天都签到的用户对应的 bit 位上的值才会是 1。最后,我们可以用 BITCOUNT 统计下 Bitmap 中的 1 的个数,这就是连续签到 10 天的用户总数了。
现在,我们可以计算一下记录了 10 天签到情况后的内存开销。每天使用 1 个 1 亿位的 Bitmap,大约占 12MB 的内存(10^8/8/1024/1024),10 天的 Bitmap 的内存开销约为 120MB,内存压力不算太大。不过,在实际应用时,最好对 Bitmap 设置过期时间,让 Redis 自动删除不再需要的签到记录,以节省内存开销。
所以,如果只需要统计数据的二值状态,例如商品有没有、用户在不在等,就可以使用 Bitmap,因为它只用一个 bit 位就能表示 0 或 1。在记录海量数据时,Bitmap 能够有效地节省内存空间。
基数统计
最后,我们再来看一个统计场景:基数统计。基数统计就是指统计一个集合中不重复的元素个数。对应到我们刚才介绍的场景中,就是统计网页的 UV。
网页 UV 的统计有个独特的地方,就是需要去重,一个用户一天内的多次访问只能算作一次。在 Redis 的集合类型中,Set 类型默认支持去重,所以看到有去重需求时,我们可能第一时间就会想到用 Set 类型。
我们来结合一个例子看一看用 Set 的情况。
有一个用户 user1 访问 page1 时,你把这个信息加到 Set 中:
用户 1 再来访问时,Set 的去重功能就保证了不会重复记录用户 1 的访问次数,这样,用户 1 就算是一个独立访客。当你需要统计 UV 时,可以直接用 SCARD 命令,这个命令会返回一个集合中的元素个数。
但是,如果 page1 非常火爆,UV 达到了千万,这个时候,一个 Set 就要记录千万个用户 ID。对于一个搞大促的电商网站而言,这样的页面可能有成千上万个,如果每个页面都用这样的一个 Set,就会消耗很大的内存空间。
当然,你也可以用 Hash 类型记录 UV。
例如,你可以把用户 ID 作为 Hash 集合的 key,当用户访问页面时,就用 HSET 命令(用于设置 Hash 集合元素的值),对这个用户 ID 记录一个值“1”,表示一个独立访客,用户 1 访问 page1 后,我们就记录为 1 个独立访客,如下所示:
即使用户 1 多次访问页面,重复执行这个 HSET 命令,也只会把 user1 的值设置为 1,仍然只记为 1 个独立访客。当要统计 UV 时,我们可以用 HLEN 命令统计 Hash 集合中的所有元素个数。
但是,和 Set 类型相似,当页面很多时,Hash 类型也会消耗很大的内存空间。那么,有什么办法既能完成统计,还能节省内存吗?
这时候,就要用到 Redis 提供的 HyperLogLog 了。
HyperLogLog 是一种用于统计基数的数据集合类型,它的最大优势就在于,当集合元素数量非常多时,它计算基数所需的空间总是固定的,而且还很小。
在 Redis 中,每个 HyperLogLog 只需要花费 12 KB 内存,就可以计算接近 2^64 个元素的基数。你看,和元素越多就越耗费内存的 Set 和 Hash 类型相比,HyperLogLog 就非常节省空间。
在统计 UV 时,你可以用 PFADD 命令(用于向 HyperLogLog 中添加新元素)把访问页面的每个用户都添加到 HyperLogLog 中。
接下来,就可以用 PFCOUNT 命令直接获得 page1 的 UV 值了,这个命令的作用就是返回 HyperLogLog 的统计结果。
不过,有一点需要你注意一下,HyperLogLog 的统计规则是基于概率完成的,所以它给出的统计结果是有一定误差的,标准误算率是 0.81%。这也就意味着,你使用 HyperLogLog 统计的 UV 是 100 万,但实际的 UV 可能是 101 万。虽然误差率不算大,但是,如果你需要精确统计结果的话,最好还是继续用 Set 或 Hash 类型。
小结
这节课,我们结合统计新增用户数和留存用户数、最新评论列表、用户签到数以及网页独立访客量这 4 种典型场景,学习了集合类型的 4 种统计模式,分别是聚合统计、排序统计、二值状态统计和基数统计。为了方便你掌握,我把 Set、Sorted Set、Hash、List、Bitmap、HyperLogLog 的支持情况和优缺点汇总在了下面的表格里,希望你把这张表格保存下来,时不时地复习一下。
可以看到,Set 和 Sorted Set 都支持多种聚合统计,不过,对于差集计算来说,只有 Set 支持。Bitmap 也能做多个 Bitmap 间的聚合计算,包括与、或和异或操作。
当需要进行排序统计时,List 中的元素虽然有序,但是一旦有新元素插入,原来的元素在 List 中的位置就会移动,那么,按位置读取的排序结果可能就不准确了。而 Sorted Set 本身是按照集合元素的权重排序,可以准确地按序获取结果,所以建议你优先使用它。
如果我们记录的数据只有 0 和 1 两个值的状态,Bitmap 会是一个很好的选择,这主要归功于 Bitmap 对于一个数据只用 1 个 bit 记录,可以节省内存。
对于基数统计来说,如果集合元素量达到亿级别而且不需要精确统计时,我建议你使用 HyperLogLog。
当然,Redis 的应用场景非常多,这张表中的总结不一定能覆盖到所有场景。我建议你也试着自己画一张表,把你遇到的其他场景添加进去。长久积累下来,你一定能够更加灵活地把集合类型应用到合适的实践项目中。
每课一问
依照惯例,我给你留个小问题。这节课,我们学习了 4 种典型的统计模式,以及各种集合类型的支持情况和优缺点,我想请你聊一聊,你还遇到过其他的统计场景吗?用的是怎样的集合类型呢?
欢迎你在留言区写下你的思考和答案,和我交流讨论。如果你身边还有需要解决这些统计问题的朋友或同事,也欢迎你把今天的内容分享给他 / 她,我们下节课见。
分享给需要的人,Ta购买本课程,你将得20元
生成海报并分享
赞 121
提建议
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
上一篇
11 | “万金油”的String,为什么不好用了?
下一篇
13 | GEO是什么?还可以定义新的数据类型吗?
精选留言(57)
- Kaito2020-09-02使用Sorted Set可以实现统计一段时间内的在线用户数:用户上线时使用zadd online_users $timestamp $user_id把用户添加到Sorted Set中,使用zcount online_users $start_timestamp $end_timestamp就可以得出指定时间段内的在线用户数。 如果key是以天划分的,还可以执行zinterstore online_users_tmp 2 online_users_{date1} online_users_{date2} aggregate max,把结果存储到online_users_tmp中,然后通过zrange online_users_tmp 0 -1 withscores就可以得到这2天都在线过的用户,并且score就是这些用户最近一次的上线时间。 还有一个有意思的方式,使用Set记录数据,再使用zunionstore命令求并集。例如sadd user1 apple orange banana、sadd user2 apple banana peach记录2个用户喜欢的水果,使用zunionstore fruits_union 2 user1 user2把结果存储到fruits_union这个key中,zrange fruits_union 0 -1 withscores可以得出每种水果被喜欢的次数。 使用HyperLogLog计算UV时,补充一点,还可以使用pfcount page1:uv page2:uv page3:uv或pfmerge page_union:uv page1:uv page2:uv page3:uv得出3个页面的UV总和。 另外,需要指出老师文章描述不严谨的地方:“Set数据类型,使用SUNIONSTORE、SDIFFSTORE、SINTERSTORE做并集、差集、交集时,选择一个从库进行聚合计算”。这3个命令都会在Redis中生成一个新key,而从库默认是readonly不可写的,所以这些命令只能在主库使用。想在从库上操作,可以使用SUNION、SDIFF、SINTER,这些命令可以计算出结果,但不会生成新key。 最后需要提醒一下: 1、如果是在集群模式使用多个key聚合计算的命令,一定要注意,因为这些key可能分布在不同的实例上,多个实例之间是无法做聚合运算的,这样操作可能会直接报错或者得到的结果是错误的! 2、当数据量非常大时,使用这些统计命令,因为复杂度较高,可能会有阻塞Redis的风险,建议把这些统计数据与在线业务数据拆分开,实例单独部署,防止在做统计操作时影响到在线业务。展开共 37 条评论482
- 注定非凡2020-09-141,作者讲了什么? 1,Redis有那些数据结构适合做统计 2,作者是怎么把这事给讲明白的? 1,列举了常见的数据统计需求。从实际需求出发,推荐适合的数据类型,讲解了怎么用,并解答这种数据结构为什么可以 2,将数据统计需求,分了四类,分类分别讲解 3,为了讲明白,作者讲了哪些要点,有哪些亮点? 1,亮点1:BITMAP的特性和使用场景,方式 2,亮点2:HyperLogLog的特性和使用场景,方式 3,要点1:日常的统计需求可以分为四类:聚合,排序,二值状态,基数,选用适合的数据类型可以实现即快速又节省内存 4,要点2:聚合统计,可以选用Set类型完成,但Set的差,并,交集操作复杂度高,在数据量大的时候会阻塞主进程 5,要点3:排序统计,可以选用List和Sorted Set 6,要点4:二值状态统计:Bitmap本身是用String类型作为底层数据结构实现,String类型会保存为二进制字节数组,所以可以看作是一个bit数组 7,要点5:基数统计:HyperLogLog ,计算基数所需空间总是固定的,而且很小。但要注意,HyperLogLog是统计规则是基于概率完成的,不是非常准确 4,对于作者所讲,我有那些发散性思考? 1,对于统计用户的打卡情况,我们项目组也做了这个需求,但遗憾的是我们没有采用bitmap这种方案,而是使用了 sortSet 2,HyperLogLog可以考虑使用到,我们项目中的统计视频播放次数,现在这块,我们的方案是,每天产生一个key,单调递增。在通过定时任务,将缓存中的结果,每天一条数据记录,存入数据库 5,在将来的那些场景中,我能够使用它? 6,留言区的收获 1,主从库模式使用Set数据类型聚合命令(来自 @kaito 大神) ①:使用SUNIONSTORE,SDIFFSTORE,SINTERSTOR做并集,差集,交集时,这三个命令都会在Redis中生成一个新key,而从库默认是readOnly。所以这些命令只能在主库上使用 ②:SUNION,SDIFF,SINTER,这些命令可以计算出结果,不产生新的key可以在从库使用展开62
- Anthony2020-09-02感觉第一个聚合统计这种场景一般频率不会太高,一般都是用在运营统计上,可以直接在mysql的从库上去统计,而不需要在redis上维护复杂的数据结构共 2 条评论35
- 波哥威武2020-09-02现在大数据情况下都是通过实时流方式统计pvuv,不太会基于redis,基于存在即合理,老师能分析下相关优劣吗,我个人的想法,一个是在大量pvuv对redis的后端读写压力,还有复杂的统计结果redis也需要复杂的数据结构设计去实现,最后是业务和分析任务解耦。23
- 土豆哪里挖2020-09-02在集群的情况下,聚合统计就没法用了吧,毕竟不是同一个实例了20
- Geek_960d5b2020-11-02老师只是提供了一种使用思路, 但做统计业界主流还是上数仓用hive等做报表11
- 范闲2020-10-201.redis里不建议用聚合统计。原因有几点: 单实例会阻塞。cluster的时候key可能分布在不同的节点,需要调用方做聚合。 2.带排序的统计可以使用sorted set。cluster的时候可能一样需要做聚合 3.hyperlog是带误差的统计,可以用来统计总量。共 3 条评论10
- 悟空聊架构2021-05-18对于这个问题:假设越新的评论权重越大,目前最新评论的权重是 N,我们执行下面的命令时,就可以获得最新的 10 条评论。 理解如下: 假设当前的评论 List 是{A, B, C, D, E, F}(其中,A 是最新的评论,以此类推,F 是最早的评论,权重分别为 10,9,8,7,6,5)。 在展示第一页的 3 个评论时,按照权重排序,查出 ABC。 展示第二页的 3 个评论时,按照权重排序,查出 DEF。 如果在展示第二页前,又产生了一个新评论 G,权重为 11,排序为 {G, A, B, C, D, E, F}。 再次查询第二页数据时,权重还是会以 10 为准,逻辑上,第一页的权重还是 10,9,8。 查询第二页数据时,可以查询出权重等于 7,6,5 的数据,返回评论 DEF。 当想查询出最新评论时,需要以权重 11 为准,第一页数据的权重就是 11,10,9,返回评论 GAB。 再次查询第二页数据时,以权重 11 为准,查询出评论 CDE。展开共 4 条评论9
- 阿基米德2021-05-14这里一亿个数据返回给客户端处理,这个场景是不是就会有大key问题共 2 条评论9
- Darren2020-09-02老师说的大部分场景都没用到过。。。。。 我们有这么一种场景: 在多实例下,定时任务就不能使用@Schedule使用,必须使用分布式定时调度,我们自研的分布式调度系统支持MQ和Http两种模式,同时支持一次性的调用和Cron表达是式形式的多次调用。 在MQ模式下(暂时不支持Cron的调用),分布式调度系统作为MQ的消费者消费需要调度的任务,同时消息中会有所使用的资源,调度系统有对应的资源上线,也可以做资源限制,没有可用资源时,消息不调度(不投递)等待之前任务资源的释放,不投递时消息就在Zset中保存着,当然不同的类型在不同的Zset中,当有对用的资源类型释放后,会有专门的MQ确认消息,告诉任务调度系统,某种类型的资源已经释放,然后从对应type的Zset中获取排队中优先级最高的消息,进行资源匹配,如果可以匹配,则进行消息发送。 当然http也是类似的,只是http不做资源管理,业务方自己掌控资源及调用频次,http请求的调用时调度系统自己发起的,引入quartz,在时间到达后,通过Http发送调用。展开共 4 条评论9
- sgl2021-04-0212MB的bitmap是大key了,生产环境会有问题等我6
- 陈阳2021-08-07没懂, 文中说到的list由于插入的新的评论,第二页可能会读到原第一页的值, 我觉得这个本来不应该就是这样的吗? 应该因为最新评论已经刷新了啊, 难道还要回去读原来的老数据吗 这块没太看懂共 4 条评论4
- 慎独明强2020-09-02有个疑问,统计亿级用户连续10天登录的场景,每天用一个bitmap的key,来存储每个用户的登录情况,将10个bitmap的key进行与运算来统计连续10天登录的用户,这个是怎么保证10个bitmap相同位是同一个用户的登录情况呢?共 15 条评论3
- 吃饭睡觉打酱油2021-04-20老师,我对bitmap统计1亿用户的有个疑问,缓存中的bitmap是怎么初始化或者怎么来的呢,怎么保证用户的顺序呢?共 3 条评论2
- Rain2020-09-16redis真是应用开发利器啊2
- 海拉鲁2020-09-02之前做过利用redis一个统计最近200个客户触达率的方案,借助list+lua 具体是用0代表触达,1代表未触达,不断丢入队列中。需要统计是lrang key 0 -1 取出全部元素,计算0的比例就是触达率了。 这样不需要每次都计算一次触达率,而是按需提供,也能保证最新。应该不是很有共性的需求,是我们对用户特定需求的一个尝试共 9 条评论2
- 剑八2022-08-20 来自浙江redis还是适合缓存提速场景 像评论这样的,要实际看业务,是有一定业务逻辑的。比如评论还有几星,图片什么的,这种用redis就比较被动了。1
- 死磕郎一世2021-06-21list新增元素如果插入到尾部,这样,前面的元素位置就不用改变了共 1 条评论1
- wnz272021-04-07有个疑问,每个用户签到是横向情况,也就是一亿个十位bit,怎么转变为竖向的10个一亿位bit共 2 条评论1
- 张申傲2020-12-10使用 incr 统计一个网页的 PV,具体为 incr page:{page_id} 和 get page:{page_id} 。因为 PV 都是长整型,因此对于String类型来说,可以采用 int 编码方式,内存开销不大。1