极客时间已完结课程限时免费阅读

12 | 局部敏感哈希:如何在常数时间内搜索Embedding最近邻?

12 | 局部敏感哈希:如何在常数时间内搜索Embedding最近邻?-极客时间

12 | 局部敏感哈希:如何在常数时间内搜索Embedding最近邻?

讲述:王喆

时长15:50大小14.46M

你好,我是王喆。
在深度学习推荐系统中,我们经常采用 Embedding 召回这一准确又便捷的方法。但是,在面对百万甚至更高量级的候选集时,线性地逐一计算 Embedding 间的相似度,往往会造成极大的服务延迟。
这个时候,我们要解决的问题就是,如何快速找到与一个 Embedding 最相似的 Embedding?这直接决定了召回层的执行速度,进而会影响推荐服务器的响应延迟。
今天,我们就一起来学习一下业界解决近似 Embedding 搜索的主要方法,局部敏感哈希。

推荐系统中的“快速”Embedding 最近邻搜索问题

在深度学习推荐系统中,我们经常会使用 Embedding 方法对物品和用户进行向量化。在训练物品和用户的 Embedding 向量时,如果二者的 Embedding 在同一个向量空间内(如图 1),我们就可以通过内积、余弦、欧式距离等相似度计算方法,来计算它们之间的相似度,从而通过用户 - 物品相似度进行个性化推荐,或者通过物品 - 物品相似度进行相似物品查找。
图1 用户和电影的Embedding向量空间
假设,用户和物品的 Embeding 都在一个 维的 Embedding 空间中,物品总数为 ,那么遍历计算一个用户和所有物品向量相似度的时间复杂度是多少呢?不难算出是 。虽然这一复杂度是线性的,但物品总数 达到百万甚至千万量级时,线性的时间复杂度也是线上服务不能承受的。
换一个角度思考这个问题,由于用户和物品的 Embedding 同处一个向量空间内,因此召回与用户向量最相似的物品 Embedding 向量这一问题,其实就是在向量空间内搜索最近邻的过程。如果我们能够找到高维空间快速搜索最近邻点的方法,那么相似 Embedding 的快速搜索问题就迎刃而解了。

使用“聚类”还是“索引”来搜索最近邻?

遇到最近邻搜索的问题,我想大部分同学直觉上肯定会想到两种解决方案,一种是聚类,我们把相似的点聚类到一起,不就可以快速地找到彼此间的最近邻了吗?另一种是索引,比如,我们通过某种数据结构建立基于向量距离的索引,在查找最近邻的时候,通过索引快速缩小范围来降低复杂度。这两种想法可不可行呢?我们一一尝试一下。
对于聚类问题,我想最经典的算法当属 K-means。它完成聚类的过程主要有以下几步:
随机指定 k 个中心点;
每个中心点代表一个类,把所有的点按照距离的远近指定给距离最近的中心点代表的类;
计算每个类包含点的平均值作为新的中心点位置;
确定好新的中心点位置后,迭代进入第 2 步,直到中心点位置收敛,不再移动。
到这里,整个 K-means 的迭代更新过程就完成了,你可以看下图 2。
图2 三中心点的K-means算法迭代过程
如果我们能够在离线计算好每个 Embedding 向量的类别,在线上我们只需要在同一个类别内的 Embedding 向量中搜索就可以了,这会大大缩小了 Embedding 的搜索范围,时间复杂度自然就下降了。
但这个过程还是存在着一些边界情况。比如,聚类边缘的点的最近邻往往会包括相邻聚类的点,如果我们只在类别内搜索,就会遗漏这些近似点。此外,中心点的数量 k 也不那么好确定,k 选得太大,离线迭代的过程就会非常慢,k 选得太小,在线搜索的范围还是很大,并没有减少太多搜索时间。所以基于聚类的搜索还是有一定局限性的,解决上面的问题也会增加过多冗余过程,得不偿失。
既然聚类有局限性,那索引能不能奏效呢?我们这里可以尝试一下经典的向量空间索引方法 Kd-tree(K-dimension tree)。与聚类不同,它是为空间中的点 / 向量建立一个索引。这该怎么理解呢?
举个例子,你可以看下图 3 中的点云,我们先用红色的线把点云一分为二,再用深蓝色的线把各自片区的点云一分为二,以此类推,直到每个片区只剩下一个点,这就完成了空间索引的构建。如果我们能够把这套索引“搬”到线上,就可以利用二叉树的结构快速找到邻接点。比如,希望找到点 q 的 m 个邻接点,我们就可以先搜索它相邻子树下的点,如果数量不够,我们可以向上回退一个层级,搜索它父片区下的其他点,直到数量凑够 m 个为止。
图3 Kd-tree索引
听上去 Kd-tree 索引似乎是一个完美的方案,但它还是无法完全解决边缘点最近邻的问题。对于点 q 来说,它的邻接片区是右上角的片区,但是它的最近邻点却是深蓝色切分线下方的那个点。所以按照 Kd-tree 的索引方法,我们还是会遗漏掉最近邻点,它只能保证快速搜索到近似的最近邻点集合。而且 Kd-tree 索引的结构并不简单,离线和在线维护的过程也相对复杂,这些都是它的弊端。那有没有更“完美”的解决方法呢?

局部敏感哈希的基本原理及多桶策略

为了“拯救”我们推荐系统的召回层,“局部敏感哈希”(Locality Sensitive Hashing,LSH)这一方法横空出世,它用简洁而高效的方法几乎完美地解决了这一问题。那它是怎么做到的呢?

1. 局部敏感哈希的基本原理

局部敏感哈希的基本思想是希望让相邻的点落入同一个“桶”,这样在进行最近邻搜索时,我们仅需要在一个桶内,或相邻几个桶内的元素中进行搜索即可。如果保持每个桶中的元素个数在一个常数附近,我们就可以把最近邻搜索的时间复杂度降低到常数级别。
那么,如何构建局部敏感哈希中的“桶”呢?下面,我们以基于欧式距离的最近邻搜索为例,来解释构建局部敏感哈希“桶”的过程。
首先,我们要弄清楚一个问题,如果将高维空间中的点向低维空间进行映射,其欧式相对距离是不是会保持不变呢?以图 4 为例,图 4 中间的彩色点处在二维空间中,当我们把二维空间中的点通过不同角度映射到 a、b、c 这三个一维空间时,可以看到原本相近的点,在一维空间中都保持着相近的距离。而原本远离的绿色点和红色点在一维空间 a 中处于接近的位置,却在空间 b 中处于远离的位置。
因此我们可以得出一个定性的结论:欧式空间中,将高维空间的点映射到低维空间,原本接近的点在低维空间中肯定依然接近,但原本远离的点则有一定概率变成接近的点。
图4 高维空间点向低维空间映射
利用低维空间可以保留高维空间相近距离关系的性质,我们就可以构造局部敏感哈希“桶”。对于 Embedding 向量来说,由于 Embedding 大量使用内积操作计算相似度,因此我们也可以用内积操作来构建局部敏感哈希桶。假设 是高维空间中的 k 维 Embedding 向量, 是随机生成的 k 维映射向量。那我们利用内积操作可以将 映射到一维空间,得到数值
而且,我们刚刚说了,一维空间也会部分保存高维空间的近似距离信息。因此,我们可以使用哈希函数 进行分桶,公式为: 。其中, ⌊⌋ 是向下取整操作, 是分桶宽度, 是 0 到 w 间的一个均匀分布随机变量,避免分桶边界固化。
不过,映射操作会损失部分距离信息,如果我们仅采用一个哈希函数进行分桶,必然存在相近点误判的情况,因此,我们可以采用 m 个哈希函数同时进行分桶。如果两个点同时掉进了 m 个桶,那它们是相似点的概率将大大增加。通过分桶找到相邻点的候选集合后,我们就可以在有限的候选集合中通过遍历找到目标点真正的 K 近邻了。
刚才我们讲的哈希策略是基于内积操作来制定的,内积相似度也是我们经常使用的相似度度量方法,事实上距离的定义有很多种,比如“曼哈顿距离”“切比雪夫距离”“汉明距离”等等。针对不同的距离定义,分桶函数的定义也有所不同,但局部敏感哈希通过分桶方式保留部分距离信息,大规模降低近邻点候选集的本质思想是通用的。

2. 局部敏感哈希的多桶策略

刚才我们讲到了可以使用多个分桶函数的方式来增加找到相似点的概率。那你可能有疑问,如果有多个分桶函数的话,具体应该如何处理不同桶之间的关系呢?这就涉及局部敏感哈希的多桶策略。
假设有 A、B、C、D、E 五个点,有 h1和 h2两个分桶函数。使用 h1来分桶时,A 和 B 掉到了一个桶里,C、D、E 掉到了一个桶里;使用 h2来分桶时,A、C、D 掉到了一个桶里,B、E 在一个桶。那么请问如果我们想找点 C 的最近邻点,应该怎么利用两个分桶结果来计算呢?
如果我们用“且”(And)操作来处理两个分桶结果之间的关系,那么结果是这样的,找到与点 C 在 h1函数下同一个桶的点,且在 h2函数下同一个桶的点,作为最近邻候选点。我们可以看到,满足条件的点只有一个,那就是点 D。也就是说,点 D 最有可能是点 C 的最近邻点。
用“且”操作作为多桶策略,可以最大程度地减少候选点数量。但是,由于哈希分桶函数不是一个绝对精确的操作,点 D 也只是最有可能的最近邻点,不是一定的最近邻点,因此,“且”操作其实也增大了漏掉最近邻点的概率。
那如果我们采用“或”(Or)操作作为多桶策略,又会是什么情况呢?具体操作就是,我们找到与点 C 在 h1函数下同一个桶的点,或在 h2函数下同一个桶的点。这个时候,我们可以看到候选集中会有三个点,分别是 A、D、E。这样一来,虽然我们增大了候选集的规模,减少了漏掉最近邻点的可能性,但增大了后续计算的开销。
当然,局部敏感哈希的多桶策略还可以更加复杂,比如使用 3 个分桶函数分桶,把同时落入两个桶的点作为最近邻候选点等等。
那么,我们到底应该选择“且”操作还是“或”操作,以及到底该选择使用几个分桶函数,每个分桶函数分几个桶呢?这些都还是工程上的权衡问题。我虽然不能给出具体的最佳数值,但可以给你一些取值的建议:
点数越多,我们越应该增加每个分桶函数中桶的个数;相反,点数越少,我们越应该减少桶的个数;
Embedding 向量的维度越大,我们越应该增加哈希函数的数量,尽量采用且的方式作为多桶策略;相反,Embedding 向量维度越小,我们越应该减少哈希函数的数量,多采用或的方式作为分桶策略。
最后,我们再回头来解决课程开头提出的问题,局部敏感哈希能在常数时间得到最近邻的结果吗?答案是可以的,如果我们能够精确地控制每个桶内的点的规模是 ,假设每个 Embedding 的维度是 ,那么找到最近邻点的时间开销将永远在 量级。采用多桶策略之后,假设分桶函数数量是 ,那么时间开销也在 量级,这仍然是一个常数。

局部敏感哈希实践

现在,我们已经知道了局部敏感哈希的基本原理和多桶策略,接下来我们一起进入实践环节,利用 Sparrow Recsys 训练好的物品 Embedding,来实现局部敏感哈希的快速搜索吧。为了保证跟 Embedding 部分的平台统一,这一次我们继续使用 Spark MLlib 完成 LSH 的实现。
在将电影 Embedding 数据转换成 dense Vector 的形式之后,我们使用 Spark MLlib 自带的 LSH 分桶模型 BucketedRandomProjectionLSH(我们简称 LSH 模型)来进行 LSH 分桶。其中最关键的部分是设定 LSH 模型中的 BucketLength 和 NumHashTables 这两个参数。其中,BucketLength 指的就是分桶公式中的分桶宽度 w,NumHashTables 指的是多桶策略中的分桶次数。
清楚了模型中的关键参数,执行的过程就跟我们讲过的其他 Spark MLlib 模型一样了,都是先调用 fit 函数训练模型,再调用 transform 函数完成分桶的过程,具体的实现你可以参考下面的代码。
def embeddingLSH(spark:SparkSession, movieEmbMap:Map[String, Array[Float]]): Unit ={
//将电影embedding数据转换成dense Vector的形式,便于之后处理
val movieEmbSeq = movieEmbMap.toSeq.map(item => (item._1, Vectors.dense(item._2.map(f => f.toDouble))))
val movieEmbDF = spark.createDataFrame(movieEmbSeq).toDF("movieId", "emb")
//利用Spark MLlib创建LSH分桶模型
val bucketProjectionLSH = new BucketedRandomProjectionLSH()
.setBucketLength(0.1)
.setNumHashTables(3)
.setInputCol("emb")
.setOutputCol("bucketId")
//训练LSH分桶模型
val bucketModel = bucketProjectionLSH.fit(movieEmbDF)
//进行分桶
val embBucketResult = bucketModel.transform(movieEmbDF)
//打印分桶结果
println("movieId, emb, bucketId schema:")
embBucketResult.printSchema()
println("movieId, emb, bucketId data result:")
embBucketResult.show(10, truncate = false)
//尝试对一个示例Embedding查找最近邻
println("Approximately searching for 5 nearest neighbors of the sample embedding:")
val sampleEmb = Vectors.dense(0.795,0.583,1.120,0.850,0.174,-0.839,-0.0633,0.249,0.673,-0.237)
bucketModel.approxNearestNeighbors(movieEmbDF, sampleEmb, 5).show(truncate = false)
}
为了帮助你更加直观的看到分桶操作的效果,我把使用 LSH 模型对电影 Embedding 进行分桶得到的五个结果打印了出来,如下所示:
+-------+-----------------------------+------------------+
|movieId|emb |bucketId |
+-------+-----------------------------+------------------------+
|710 |[0.04211471602320671,..] |[[-2.0], [14.0], [8.0]] |
|205 |[0.6645985841751099,...] |[[-4.0], [3.0], [5.0]] |
|45 |[0.4899883568286896,...] |[[-6.0], [-1.0], [2.0]] |
|515 |[0.6064003705978394,...] |[[-3.0], [-1.0], [2.0]] |
|574 |[0.5780771970748901,...] |[[-5.0], [2.0], [0.0]] |
+-------+-----------------------------+------------------------+
你可以看到在 BucketId 这一列,因为我们之前设置了 NumHashTables 参数为 3,所以每一个 Embedding 对应了 3 个 BucketId。在实际的最近邻搜索过程中,我们就可以利用刚才讲的多桶策略进行搜索了。
事实上,在一些超大规模的最近邻搜索问题中,索引、分桶的策略还能进一步复杂。如果你有兴趣深入学习,我推荐你去了解一下Facebook 的开源向量最近邻搜索库 FAISS,这是一个在业界广泛应用的开源解决方案。

小结

本节课,我们一起解决了“Embedding 最近邻搜索”问题。
事实上,对于推荐系统来说,我们可以把召回最相似物品 Embedding 的问题,看成是在高维的向量空间内搜索最近邻点的过程。遇到最近邻问题,我们一般会采用聚类和索引这两种方法。但是聚类和索引都无法完全解决边缘点最近邻的问题,并且对于聚类来说,中心点的数量 k 也并不好确定,而对于 Kd-tree 索引来说,Kd-tree 索引的结构并不简单,离线和在线维护的过程也相对复杂。
因此,解决最近邻问题最“完美”的办法就是使用局部敏感哈希,在每个桶内点的数量接近时,它能够把最近邻查找的时间控制在常数级别。为了进一步提高最近邻搜索的效率或召回率,我们还可以采用多桶策略,首先是基于“且”操作的多桶策略能够进一步减少候选集规模,增加计算效率,其次是基于“或”操作的多桶策略则能够提高召回率,减少漏掉最近邻点的可能性。
最后,我在下面列出了各种方法的优缺点,希望能帮助你做一个快速的复盘。

课后思考

如果让你在推荐服务器内部的召回层实现最近邻搜索过程,你会怎样存储和使用我们在离线产生的分桶数据,以及怎样设计线上的搜索过程呢?
欢迎你在留言区写出你的答案,更欢迎你把这一过程的实现提交 Pull Request 到 Sparrow Resys 项目,如果能够被采纳,你将成为这一开源项目的贡献者之一。我们下节课再见!
分享给需要的人,Ta购买本课程,你将得20
生成海报并分享

赞 28

提建议

上一篇
11 | 召回层:如何快速又准确地筛选掉不相关物品?
下一篇
13 | 模型服务:怎样把你的离线模型部署到线上?
 写留言

精选留言(40)

  • Dikiwi
    2020-11-01
    b 是 0 到 w 间的一个均匀分布随机变量,避免分桶边界固化。这是什么意思呢?是说可以通过调整b来形成另外一个一个hash函数?

    作者回复: 这是个好问题,推荐其他同学也关注。 因为如果总是固定边界,很容易让边界两边非常接近的点总是被分到两个桶里。这是我们不想看到的。 所以随机调整b,生成多个hash函数,并且采用或的方式组合,就可以一定程度避免这些边界点的问题。

    62
  • kaijien
    2020-10-31
    老师您好,您提到点数越多越应该增加桶的个数,还有Embedding维度越大越应该增加哈希函数并多用且的方式,那从您的经验上: 1 每个桶维持多少个点比较好? 2 Embedding一般多少算大?比如768维是否应该用且的方式?应该用多少哈希函数比较好?

    作者回复: 1、每个桶取多少点跟你在线上想寻找top N的规模有关系。比如召回层想召回1000个物品,那么N就是1000,那么桶内点数的规模就维持在1000-5000的级别是比较合适的。当然了点数还跟你想取且还是或,有多少个哈希函数有关系,但基本上需要跟N在一个量级且高于N。 2、Embedding在实践中其实很少取768那么高的维度,我们训练模型时候的经验是,超过100维后,增加维度的作用就没那么明显了,通常取10-50维就足够了。比如说50维,这其实已经是非常高维的embedding了,我推荐用比较复杂一点的操作,比如取5个哈希函数,同时落在3+个桶里的点作为候选点。 但还是那句话,要自己观察数据,观察LSH的召回率如何,因为每家的数据都不一样,从别人那得来的经验经常不奏效是很正常的。

    共 2 条评论
    37
  • Alan
    2021-03-03
    悄悄告诉大家:embedding层K值的初始判断,有个经验公式:K= Embedding维数开4次方 ,x=初始的维度数; 后续,K值调参按照2的倍数进行调整,例如:2,4,8,16;

    作者回复: 赞,这个我也不知道,非常感谢分享!

    共 4 条评论
    37
  • Alr
    2020-12-25
    课后思考问题:以item_id作为key, item_id对应的BucketId作为value存储在redis, 再以每个BucketId作为key, item_id作为value存储在redis, 在召回的时候遍历item_id的所有BucketId,获取BucketId对应的item_id就是需要召回的item, 请问老师这个思路对吗

    作者回复: 对的。就是建立倒排索引的思路。

    24
  • 浣熊当家
    2020-10-31
    请问老师关于这句话 “在训练物品和用户的 Embedding 向量时,如果二者的 Embedding 在同一个向量空间内”, 我们在之前6-7节embedding的中,讲了怎么把物品序列信息转化为embedding, 想知道,用户的embedding是怎么生成的呢? 然后,物品和用户在同一个向量空间,这个是怎么得到的呢?

    作者回复: 好问题。在咱们的项目里,用户embedding就是通过平均这个用户评论过的高分电影的embedding得到的。 所以他们肯定是在一个向量空间里。 只要是利用用户历史的item embedding生成的用户embedding,可以说都是在一个向量空间内,这些生成方式包括但不限于average pooling,sum pooling,attention等等。

    共 2 条评论
    15
  • 范闲
    2020-12-02
    LSH也有自己的问题。数据量太大的时候,hash的个数不好选择,另外存在hash冲突,容易降低召回率。 同基于树的,基于量化的,基于的图的方法来比,在召回率,速度和内存使用上都不占优势。

    作者回复: 没有magic嘛,各种方法都有优势,适用的数据量也不同。所以facebook在faiss里面其实是融合了多种索引方式,大家有兴趣还是推荐深入去看一下faiss的原理。

    12
  • haydenlo
    2020-11-07
    请问对于计算距离,欧几里得距离和余弦距离等应该怎么选择?

    作者回复: 根据你训练embedding时候选择的相似度来确定。 比如你训练embedding模型时就采用了欧式距离,那么这里就用欧式距离。训练模型时用了内积,这里就用内积。

    9
  • Infp
    2021-07-26
    本人用过faiss,LSH无论是召回率还是速度方面都不是很好。基于图的HNSW或者HNSWSQ是比较好的索引方式,当然缺点是会占用较大的存储空间,还有很多其他索引方式,可参考faiss的GitHub介绍。另外,faiss的wiki里面有关于如何选择索引的指南,有需要的同学可以去了解一下:https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index。

    作者回复: LSH只是ANN的一种解决方法,Faiss采用了多种索引的结构,可以扩展学习一下。

    5
  • Yang Hong
    2021-07-20
    课后思考: 离线训练:LSH model为每个item embedding生成m个分桶,同时为每个user embedding生成m个分桶。 离线存储:1)在redis中存储item的分桶结果,key为item_id, value为item对应的BucketId;建立倒排索引,再以每个BucketId作为key, value为对应的item_id;2)在redis中存储user的分桶结果,key为user_id, value为user对应的BucketId; 在线召回:1)取出目标user的user embedding,和user对应的BucketId;2)查询redis分别获取m个BucketId对应的item_id,用且/或的多桶策略找到需要召回的item。 不知道这个思路对不对。
    展开

    作者回复: user emb不用预存分桶,保存hash函数在线算就可以

    5
  • JustDoDT
    2020-11-01
    如何精确的控制每个桶内的点的规模是 C?

    作者回复: 很难精确控制每个桶内的规模是C,但能通过控制桶的宽度w,来大概控制桶的规模在C附近。去掉一些噪声点后,如果点的分布比较均匀,那么每个桶的规模就比较稳定。

    5
  • 梁栋💝
    2021-01-27
    分桶宽度怎么决定的,非常迷惑。
    4
  • 那时刻
    2020-10-30
    请问老师局部敏感哈希里的minhash和simhash是否有应用呢?

    作者回复: 这是个好问题,但我觉得自己思考不难得出结论。minhash和simhash主要用在文档去重这样的场景,你觉得能不能把minhash和simhash应用在embedding的分桶过程中?如果可以的话,应用过程是什么呢?

    共 2 条评论
    4
  • 马龙流
    2020-11-14
    Embedding 向量的维度越大,我们越应该增加哈希函数的数量,尽量采用且的方式作为多桶策略;这话怎么理解呢?还有就是faiss这种,里面用到的就是局部哈希原理?

    作者回复: LSH是Faiss index选择的一种,Faiss的详细细节太多,选择也比较多,需要参照开源项目展开学习。 Embedding向量的维度越大,单个LSH分桶错误的概率就越大,多个分桶联合才更容易找到相似物品。

    3
  • 魔法海
    2021-07-07
    老师,遇到个问题,在使用faiss的时候,cpu占用率在train的时候一直是100%。网上设置的两个参数: 1. export OMP_WAIT_POLICY=PASSIVE已经加入了环境变量 2. faiss.omp_set_num_threads(4) 其他过程都ok,就是在train和add的时候一直是100%。这个需要怎么修复?
    2
  • 挖掘机
    2021-06-15
    如何判断用户和物品是否在一个向量空间呢?我看后面双塔的时候又说物品和向量不在一个空间,这是如何判断的呢?

    作者回复: 用户和物品向量直接dot prodcut或者cosin similarity交叉,那么在一个空间内,如果经过了concat层,或者MLP进行交叉,那么不在一个空间内

    2
  • 梁栋💝
    2021-01-06
    课后思考: 1)首先user embedding是基于历史浏览item embedding平均后生成的,这个一般是online实时计算的。 2)当拿到user embedding后,我们需要离线训练好的LSH model对这个emb向量求出3个分桶。 3)拿到3个分桶,我们需要召回3个桶内的item embedding到内存,再进行Online计算求最近距离。 那么难点在于: 1)冷启动用户没有历史行为,无法用。 2)LSH model怎么导出到online服务使用。
    展开

    作者回复: 过程基本正确。但难点2不太成立,就是把每个item和user emb的桶id存到redis就可以了,或者建立倒排索引,这个过程是比较直接的。

    共 3 条评论
    2
  • 杨佳亦
    2020-12-31
    请问老师,为什么: Embedding 向量维度越大,越应增加哈希函数的数量,用“且”分桶;相反,Embedding 向量维度越小,我们越应减少哈希函数的数量,用“或”分桶? 我的理解是,Embedding维度较大,特征密集不好分,采用多个哈希函数做映射再取交的确可以找到相似的Embedding;Embedding维度较小,特征分散,需要的桶不多,用或可以增加结果数量。 但是疑虑在于,Embedding大,需要的桶也多,计算量岂不是会变得非常大?
    展开

    作者回复: 是这样,Embedding维度大计算量大是肯定的。这本身就是一个tradeoff,有时候,为了线上过程更高效,减少emb的维度也是可以牺牲的选择。一切工程问题都是取舍的问题。

    共 2 条评论
    2
  • follow-fate
    2020-11-28
    facebook开源的faiss是不是可以替代LSH了?

    作者回复: 可以。faiss是业界主流解决方案,LSH是它的原理之一,这里LSH主要是为了大家学习原理。

    共 2 条评论
    2
  • 。LEAF
    2020-11-19
    老师好,最后得到 每个电影的 分桶,比如[-2.0], [14.0], [8.0]],相当于再做召回的时候,比如使用“或”策略,就直接再剩余所有电影里找到 在[-2.0], [14.0], [8.0] 3个桶里的电影就可以了吧

    作者回复: 是这样的。 如果觉得不保险,还可以在临近桶找,这里面还是一个召回率和准确率之间权衡的问题。

    2
  • ALAN
    2020-10-30
    老师,numhashtable为3,是指使用了3个分桶函数吗?

    作者回复: 是的,所以得到了三个bucketid

    2